Alteryx vs H2O.ai

Last Updated:

Our analysts compared Alteryx vs H2O.ai based on data from our 400+ point analysis of Big Data Analytics Tools, user reviews and our own crowdsourced data from our free software selection platform.

Product Basics

The Alteryx platform is a suite of five products offering self-service statistical, predictive and spatial data analytics to achieve enterprise, financial and industrial intelligence. It allows users to create repeatable extract-transform-load workflows, with or without a programming language. Its scalable performance and deployment options enable analysis from the enterprise to big data levels.

A drag-and-drop interface enables high-speed analytics and modeling, supported by a community of model developers in the vendor’s customer base. Depending on the products selected from the suite, it can perform end-to-end BI, from data harvesting from deep data pools to automated operationalizing.
read more...
H2O.ai is a cutting-edge machine learning platform known for its advanced automation and scalability. It empowers organizations to harness the power of artificial intelligence and predictive analytics. Key features include AutoML, which streamlines the machine learning process, and a rich library of advanced algorithms. H2O.ai offers benefits such as enhanced predictive accuracy, model interpretability, and flexible deployment options, catering to a diverse range of industries. Its open-source foundation fosters collaboration, while its comprehensive ecosystem allows users to customize and extend its capabilities. While it's praised for its efficiency and support for large datasets, users may encounter a learning curve when navigating its sophisticated features.
read more...
$99/User, Monthly
Get a free price quote
Tailored to your specific needs
$6,900 Annually
Get a free price quote
Tailored to your specific needs
Small 
i
Medium 
i
Large 
i
Small 
i
Medium 
i
Large 
i
Windows
Mac
Linux
Android
Chromebook
Windows
Mac
Linux
Android
Chromebook
Cloud
On-Premise
Mobile
Cloud
On-Premise
Mobile

Product Assistance

Documentation
In Person
Live Online
Videos
Webinars
Documentation
In Person
Live Online
Videos
Webinars
Email
Phone
Chat
FAQ
Forum
Knowledge Base
24/7 Live Support
Email
Phone
Chat
FAQ
Forum
Knowledge Base
24/7 Live Support

Product Insights

  • Coding Flexibility: Design workflows in a flexible code-free or code-based interface, depending on individual abilities, needs and programming knowledge. Optionally, create code with C++, Python or R. 
  • In-House Model Library: Save on time and resources during app development; lean partially on the platform’s extensive customer base for the know-how. Access, run and modify any of hundreds of analytics applications in the Analytics Gallery created by the vendor’s community. 
  • Thorough End-to-End Analytics: Perform end-to-end analytics with products each specifically developed for a certain step of the analytical process. Collect, organize and prioritize data with Alteryx Connect and Dataset, execute it with Alteryx Designer and streamline operationalizing models with Promote. 
  • Spatial Analytics: Make location-based calculations — i.e. trade areas, drive time and more — using geospatial data and street map or satellite imagery integration. 
  • ClearStory Data: Perform continuous, automated analytics on complex and unstructured data at the enterprise level through ClearStory Data, acquired by Alteryx in 2019. 
read more...
  • Enhanced Predictive Accuracy: H2O.ai's advanced algorithms and machine learning capabilities enable organizations to achieve higher predictive accuracy in various applications. This leads to more informed decision-making and improved outcomes.
  • Scalability: One of the standout benefits of H2O.ai is its scalability. It can seamlessly handle both small and large datasets, making it suitable for businesses of all sizes. This scalability ensures that the system remains efficient as data volumes grow.
  • Automated Machine Learning (AutoML): H2O.ai simplifies the machine learning process with AutoML. This feature automates tasks such as feature engineering, model selection, and hyperparameter tuning, allowing data scientists to focus on higher-level tasks and reducing the barrier to entry for those new to machine learning.
  • Interpretability: Understanding machine learning models is crucial for trust and compliance. H2O.ai provides tools and methods for model interpretability, making it easier to explain model predictions and meet regulatory requirements in industries like finance and healthcare.
  • Efficiency: With H2O.ai, organizations can significantly reduce the time and resources required to develop and deploy machine learning models. This increased efficiency accelerates time-to-value for data-driven initiatives.
  • Open Source: H2O.ai embraces open source principles, making it accessible to a wide community of users and developers. This fosters innovation and collaboration, leading to continuous improvements in the platform.
  • Flexible Deployment Options: H2O.ai offers flexibility in deploying models. Users can choose to deploy models in cloud environments, on-premises, or even at the edge, ensuring that the solution aligns with their specific infrastructure and security requirements.
  • Support for Diverse Data Sources: H2O.ai supports data integration from a variety of sources, including structured and unstructured data, ensuring that organizations can leverage their entire data ecosystem for predictive analytics.
  • Comprehensive Ecosystem: H2O.ai provides a comprehensive ecosystem with various tools and integrations, allowing users to extend its functionality and integrate it seamlessly into their existing workflows and technologies.
read more...
  • Internal Data Visualization: Display data insights at each stage of ETL, enabling validation and verification at every step of analysis through its in-platform data visualization solution, Visualytics. 
  • Data Visualization Export: Export to data visualizers like Qlikview and Tableau in several formats seamlessly, if the platform’s in-house visualization capabilities don’t satisfy the business’s needs. 
read more...
  • AutoML: H2O.ai's AutoML functionality automates the end-to-end machine learning process. It handles everything from data preprocessing to model selection and hyperparameter tuning, making machine learning accessible to a broader range of users.
  • Scalability: H2O.ai's platform is highly scalable, capable of handling both small and large datasets with ease. This ensures that organizations can work with data of varying sizes, accommodating growth and evolving needs.
  • Interpretability: Model interpretability is crucial for understanding how and why a model makes predictions. H2O.ai provides tools and techniques for explaining complex machine learning models, enhancing transparency and trust.
  • Efficiency: H2O.ai streamlines the machine learning workflow, reducing the time and resources required to develop and deploy models. This efficiency accelerates the delivery of data-driven insights and solutions.
  • Open Source: H2O.ai embraces an open-source philosophy, fostering collaboration and innovation. The platform is built on open-source technologies, allowing users to contribute to its development and benefit from a thriving community.
  • Flexible Deployment: Users can deploy models generated with H2O.ai in a variety of environments, including cloud, on-premises, and edge computing. This flexibility ensures that the solution aligns with an organization's specific infrastructure and security requirements.
  • Data Source Compatibility: H2O.ai supports diverse data sources, including structured and unstructured data, enabling organizations to leverage their entire data ecosystem for machine learning projects.
  • Comprehensive Ecosystem: H2O.ai offers a comprehensive ecosystem of tools and integrations that enhance its functionality. Users can extend and customize the platform to integrate seamlessly into their existing workflows and technology stack.
  • Advanced Algorithms: The platform includes a rich set of advanced machine learning algorithms, empowering data scientists and analysts to tackle complex problems and extract valuable insights from their data.
  • Model Management: H2O.ai provides robust model management capabilities, allowing users to monitor, update, and deploy models effectively. This feature ensures that models remain relevant and accurate over time.
read more...

Product Ranking

#8

among all
Big Data Analytics Tools

#65

among all
Big Data Analytics Tools

Find out who the leaders are

Analyst Rating Summary

86
89
69
83
54
88
89
86
Show More Show More
Data Management
Integrations and Extensibility
Availability and Scalability
Geospatial Visualizations and Analysis
Machine Learning
Availability and Scalability
Data Management
Machine Learning
Platform Security
Integrations and Extensibility

Analyst Ratings for Functional Requirements Customize This Data Customize This Data

Alteryx
H2O.ai
+ Add Product + Add Product
Augmented Analytics Computer Vision And Internet Of Things (IoT) Dashboarding And Data Visualization Data Management Data Preparation Geospatial Visualizations And Analysis Machine Learning Mobile Capabilities Platform Capabilities Reporting 69 54 89 100 96 93 0 86 83 88 86 100 65 100 0 57 0 25 50 75 100
42%
42%
16%
83%
0%
17%
13%
50%
37%
75%
0%
25%
88%
0%
12%
88%
0%
12%
100%
0%
0%
100%
0%
0%
100%
0%
0%
90%
10%
0%
86%
14%
0%
71%
0%
29%
87%
10%
3%
100%
0%
0%
0%
0%
100%
0%
0%
100%
100%
0%
0%
100%
0%
0%
86%
0%
14%
57%
0%
43%

Analyst Ratings for Technical Requirements Customize This Data Customize This Data

86%
14%
0%
100%
0%
0%
96%
0%
4%
96%
0%
4%
93%
0%
7%
100%
0%
0%

User Sentiment Summary

Excellent User Sentiment 496 reviews
we're gathering data
90%
of users recommend this product

Alteryx has a 'excellent' User Satisfaction Rating of 90% when considering 496 user reviews from 4 recognized software review sites.

we're gathering data
4.5 (158)
n/a
4.7 (74)
n/a
4.4 (56)
n/a
4.5 (208)
n/a

Awards

SelectHub research analysts have evaluated Alteryx and concluded it earns best-in-class honors for Integrations and Extensibility. Alteryx stands above the rest by achieving an ‘Excellent’ rating as a User Favorite.

User Favorite Award
Integrations and Extensibility Award

SelectHub research analysts have evaluated H2O.ai and concluded it earns best-in-class honors for Machine Learning.

Machine Learning Award

Synopsis of User Ratings and Reviews

Data Analysis: All users who reviewed analytics said that the platform adds value to data through features such as statistical modeling and predictive analysis.
Data Processing: Around 86% of the users who mentioned data processing said that, with a lightweight ETL tool, the solution excels at data wrangling for further analysis.
Data Integration: Citing strong integration with multiple data sources and tools, around 84% of the users said that it works well with big data.
Ease of Use: Approximately 83% of the users who mentioned ease of use said that the platform’s low-code approach, with drag-and-drop functionality, makes the interface user-friendly.
Online Community: The online community is responsive and helpful, according to around 74% of users who discussed support for the platform.
Functionality: With fuzzy matching and join capabilities, the platform is feature-rich and versatile, said approximately 63% of users who discussed functionality.
Show more
Efficient AutoML: Users appreciate H2O.ai's AutoML capabilities, which streamline the machine learning process, making it accessible to a broader audience and saving time on model development.
Scalability: Many users highlight H2O.ai's ability to handle large datasets and scale seamlessly, accommodating the needs of businesses with varying data volumes.
Model Interpretability: H2O.ai's interpretability tools are praised for helping users understand and trust complex machine learning models, particularly in regulated industries.
Open Source Foundation: Users appreciate the open-source nature of H2O.ai, which fosters collaboration, transparency, and a thriving community of users and developers.
Comprehensive Ecosystem: The platform's extensive ecosystem of tools and integrations is a pro, as it allows users to extend and customize their workflows to suit their specific needs.
Advanced Algorithms: H2O.ai's rich library of advanced machine learning algorithms is well-received by users, enabling them to tackle complex problems effectively.
Model Management: Users find the model management capabilities of H2O.ai robust, making it easier to monitor, update, and deploy models for ongoing success.
Flexible Deployment Options: The flexibility to deploy models in various environments, including cloud and on-premises, is seen as a significant advantage by users, aligning with their infrastructure needs.
Support for Diverse Data Sources: Users value H2O.ai's support for a wide range of data sources, enabling them to leverage their entire data ecosystem for machine learning projects.
Time-to-Value: Many users report that H2O.ai accelerates their time-to-value for data-driven initiatives, allowing them to derive insights and achieve results more quickly.
Show more
Cost: In addition to the high cost of licenses, the price of add-ons is limiting, said around 89% of the users who reviewed pricing.
Data Visualization: Around 75% of users who reviewed its presentation capabilities said that with outdated graphics, the platform lags behind other solutions in data visualization.
Performance: The solution is prone to infrequent crashes, especially when processing large amounts of data, as said by 65% of users who discussed performance.
Training: Approximately 54% of the users who reviewed learning said that with the documentation not being up to date with latest features, there is a steep learning curve and training is required.
Show more
Steep Learning Curve: Some users find H2O.ai challenging to learn, particularly for those new to machine learning, due to its advanced features and concepts.
Resource Intensive: Users with limited computational resources may encounter challenges when working with large datasets or complex models, as it can demand substantial computing power.
Data Quality Dependencies: H2O.ai's effectiveness relies heavily on high-quality, clean data, and users report that poor data quality can impact model performance and accuracy.
Complexity of Interpretation: While the platform offers interpretability tools, users mention that fully understanding highly complex machine learning models can still be challenging.
Integration Efforts: Integrating H2O.ai into existing IT environments can require significant effort and technical expertise, which may be a drawback for some organizations.
Customization Complexity: Extensive customization can be complex, and users with specific use cases may need advanced knowledge of the platform to tailor solutions effectively.
Scalability Management: While H2O.ai is highly scalable, effectively managing scaling processes, particularly for large enterprises, can be complex and may require specialized expertise.
Documentation Gaps: Some users have noted occasional gaps in documentation and support resources, which can hinder troubleshooting and development efforts.
Model Deployment Challenges: Deploying models in production environments, especially in highly regulated industries, can require additional considerations and expertise, which users find challenging.
Algorithm Selection: Choosing the right algorithm for specific use cases can be a hurdle, as it demands a deep understanding of the platform and the nuances of different algorithms.
Show more

Alteryx is a data science solution that leverages the power of AI and ML to blend, parse, transform and visualize big business data to promote self-serve analysis of business metrics. Many users who reviewed data analysis said that the tool performs statistical, spatial and predictive analysis in the same workflow. Most of the users who reviewed data processing said that, with a lightweight ETL tool, the platform has strong data manipulation and modeling efficiencies, though some users said that it can be tricky to use SQL queries. Citing integration with Power BI, Tableau and Python, most of the users said that the tool connects seamlessly to data from databases and files, apps, and third-party data sources, among others, to expand the reach of search-based and AI-driven analytics. Most of the users who discussed ease of use said that the tool is intuitive with drag-and-drop functionality and a well-designed interface, though some users said error handling can be challenging for automated workflows. Most of the users who reviewed support said that online communities are helpful in providing answers to queries. Citing automated workflows, many users said that the tool helps save time, though some users said that these can be overly complex and need improvement. On the flip side, many users who reviewed pricing said that its expensive licenses and add-ons are cost-prohibitive, and cost per core is high for enterprises looking to scale. A majority of users who reviewed its visualization capabilities said that they need to export data to visually stronger applications, such as Tableau or Power BI, to make the reports presentation-worthy. Citing slow runtimes when executing complex workflows, especially with large datasets, many users said that performance-wise, the solution is prone to infrequent crashes. Most of the users who discussed learning said that with documentation not being in sync with latest releases, training is a must to optimally use the tool. Overall, Alteryx is a data science tool that, with its low-code approach and strong data wrangling capabilities, makes the journey from data acquisition to data insights seamless and promotes data literacy across organizations, though it might be better suited for medium- to large-sized organizations.

Show more

User reviews for H2O.ai offer insights into both its strengths and weaknesses. Many users praise its efficient AutoML capabilities, making machine learning more accessible and saving time in model development. The scalability of H2O.ai is also widely appreciated, accommodating various data volumes for businesses. Users find its model interpretability tools valuable, particularly in regulated industries, for understanding complex models. The platform's open-source foundation fosters collaboration and transparency, drawing positive remarks. Its comprehensive ecosystem and support for advanced algorithms are additional strengths, enabling users to extend and customize their workflows effectively. On the downside, some users highlight a steep learning curve, particularly for newcomers to machine learning. The resource-intensive nature of H2O.ai, especially when dealing with large datasets, can be a limitation for those with limited computational resources. Data quality dependencies impact model performance, and complex model interpretation remains a challenge. Integrating H2O.ai into existing IT environments can be labor-intensive, and extensive customization may demand advanced knowledge. Effective scalability management can also pose complexities. Occasional gaps in documentation and support resources have been noted, affecting troubleshooting and development efforts. Compared to similar products, users see H2O.ai as a robust contender, offering a rich set of features and a vibrant open-source community. However, its learning curve and resource requirements may be factors for consideration. Ultimately, user reviews reflect a mix of praise for H2O.ai's capabilities and challenges faced in mastering its advanced functionalities.

Show more

Screenshots

we're gathering data

Top Alternatives in Big Data Analytics Tools


Azure Synapse Analytics

Dataiku

H2O.ai

IBM Watson Studio

KNIME

Looker Studio

Oracle Analytics Cloud

Qlik Sense

RapidMiner

SageMaker

SAP Analytics Cloud

SAS Viya

Spotfire

Tableau

WE DISTILL IT INTO REAL REQUIREMENTS, COMPARISON REPORTS, PRICE GUIDES and more...

Compare products
Comparison Report
Just drag this link to the bookmark bar.
?
Table settings