Our analysts compared Alteryx vs H2O.ai based on data from our 400+ point analysis of Big Data Analytics Tools, user reviews and our own crowdsourced data from our free software selection platform.
Analyst Rating
User Sentiment
among all Big Data Analytics Tools
Alteryx has a 'excellent' User Satisfaction Rating of 90% when considering 496 user reviews from 4 recognized software review sites.
SelectHub research analysts have evaluated Alteryx and concluded it earns best-in-class honors for Integrations and Extensibility. Alteryx stands above the rest by achieving an ‘Excellent’ rating as a User Favorite.
SelectHub research analysts have evaluated H2O.ai and concluded it earns best-in-class honors for Machine Learning.
Alteryx is a data science solution that leverages the power of AI and ML to blend, parse, transform and visualize big business data to promote self-serve analysis of business metrics. Many users who reviewed data analysis said that the tool performs statistical, spatial and predictive analysis in the same workflow. Most of the users who reviewed data processing said that, with a lightweight ETL tool, the platform has strong data manipulation and modeling efficiencies, though some users said that it can be tricky to use SQL queries. Citing integration with Power BI, Tableau and Python, most of the users said that the tool connects seamlessly to data from databases and files, apps, and third-party data sources, among others, to expand the reach of search-based and AI-driven analytics. Most of the users who discussed ease of use said that the tool is intuitive with drag-and-drop functionality and a well-designed interface, though some users said error handling can be challenging for automated workflows. Most of the users who reviewed support said that online communities are helpful in providing answers to queries. Citing automated workflows, many users said that the tool helps save time, though some users said that these can be overly complex and need improvement. On the flip side, many users who reviewed pricing said that its expensive licenses and add-ons are cost-prohibitive, and cost per core is high for enterprises looking to scale. A majority of users who reviewed its visualization capabilities said that they need to export data to visually stronger applications, such as Tableau or Power BI, to make the reports presentation-worthy. Citing slow runtimes when executing complex workflows, especially with large datasets, many users said that performance-wise, the solution is prone to infrequent crashes. Most of the users who discussed learning said that with documentation not being in sync with latest releases, training is a must to optimally use the tool. Overall, Alteryx is a data science tool that, with its low-code approach and strong data wrangling capabilities, makes the journey from data acquisition to data insights seamless and promotes data literacy across organizations, though it might be better suited for medium- to large-sized organizations.
User reviews for H2O.ai offer insights into both its strengths and weaknesses. Many users praise its efficient AutoML capabilities, making machine learning more accessible and saving time in model development. The scalability of H2O.ai is also widely appreciated, accommodating various data volumes for businesses. Users find its model interpretability tools valuable, particularly in regulated industries, for understanding complex models. The platform's open-source foundation fosters collaboration and transparency, drawing positive remarks. Its comprehensive ecosystem and support for advanced algorithms are additional strengths, enabling users to extend and customize their workflows effectively. On the downside, some users highlight a steep learning curve, particularly for newcomers to machine learning. The resource-intensive nature of H2O.ai, especially when dealing with large datasets, can be a limitation for those with limited computational resources. Data quality dependencies impact model performance, and complex model interpretation remains a challenge. Integrating H2O.ai into existing IT environments can be labor-intensive, and extensive customization may demand advanced knowledge. Effective scalability management can also pose complexities. Occasional gaps in documentation and support resources have been noted, affecting troubleshooting and development efforts. Compared to similar products, users see H2O.ai as a robust contender, offering a rich set of features and a vibrant open-source community. However, its learning curve and resource requirements may be factors for consideration. Ultimately, user reviews reflect a mix of praise for H2O.ai's capabilities and challenges faced in mastering its advanced functionalities.
WE DISTILL IT INTO REAL REQUIREMENTS, COMPARISON REPORTS, PRICE GUIDES and more...