BigQuery vs H2O.ai

Last Updated:

Our analysts compared BigQuery vs H2O.ai based on data from our 400+ point analysis of Big Data Analytics Tools, user reviews and our own crowdsourced data from our free software selection platform.

Product Basics

BigQuery, a cloud-based data warehouse offered by Google, provides businesses with a scalable and cost-effective solution for analyzing massive datasets. It eliminates the need for infrastructure management, allowing users to focus on extracting valuable insights from their data using familiar SQL and built-in machine learning capabilities. BigQuery's serverless architecture enables efficient scaling, allowing you to query terabytes of data in seconds and petabytes in minutes.

BigQuery is particularly well-suited for organizations dealing with large and complex datasets that require rapid analysis. Its ability to integrate data from various sources, including Google Cloud Platform and other cloud providers, makes it a versatile tool for businesses with diverse data landscapes. Key benefits include scalability, ease of use, and cost-effectiveness. BigQuery offers a pay-as-you-go pricing model, allowing you to only pay for the resources you consume. You are billed based on the amount of data processed by your queries and the amount of data stored.

While BigQuery offers numerous advantages, it's important to consider factors such as your specific data analytics needs and budget when comparing it to similar products. User experiences with BigQuery have generally been positive, highlighting its speed, scalability, and ease of use. However, some users have noted that the pricing structure can become complex for highly demanding workloads.

read more...
H2O.ai is a cutting-edge machine learning platform known for its advanced automation and scalability. It empowers organizations to harness the power of artificial intelligence and predictive analytics. Key features include AutoML, which streamlines the machine learning process, and a rich library of advanced algorithms. H2O.ai offers benefits such as enhanced predictive accuracy, model interpretability, and flexible deployment options, catering to a diverse range of industries. Its open-source foundation fosters collaboration, while its comprehensive ecosystem allows users to customize and extend its capabilities. While it's praised for its efficiency and support for large datasets, users may encounter a learning curve when navigating its sophisticated features.
read more...
$6.25/TiB, Usage-Based
Get a free price quote
Tailored to your specific needs
$6,900 Annually
Get a free price quote
Tailored to your specific needs
Small 
i
Medium 
i
Large 
i
Small 
i
Medium 
i
Large 
i
Windows
Mac
Linux
Android
Chromebook
Windows
Mac
Linux
Android
Chromebook
Cloud
On-Premise
Mobile
Cloud
On-Premise
Mobile

Product Assistance

Documentation
In Person
Live Online
Videos
Webinars
Documentation
In Person
Live Online
Videos
Webinars
Email
Phone
Chat
FAQ
Forum
Knowledge Base
24/7 Live Support
Email
Phone
Chat
FAQ
Forum
Knowledge Base
24/7 Live Support

Product Insights

  • Forecast and Plan Ahead: Ingest large amounts of data quickly to strengthen forecasting and boost decision-making processes. 
  • Deliver Insights: Find discrepancies in data and act on them accordingly. 
  • Focus on Analytics and Not Infrastructure: Handles large volumes of data without putting strain on an organization’s IT resources. 
  • Provide a User-Friendly Environment: It’s user-friendly for both technical and non-technical users. High-level knowledge is not necessary to operate the software effectively. 
  • Speed Up Processes: Utilizes fast SQL databases to quickly and efficiently analyze terabytes worth of data. 
read more...
  • Enhanced Predictive Accuracy: H2O.ai's advanced algorithms and machine learning capabilities enable organizations to achieve higher predictive accuracy in various applications. This leads to more informed decision-making and improved outcomes.
  • Scalability: One of the standout benefits of H2O.ai is its scalability. It can seamlessly handle both small and large datasets, making it suitable for businesses of all sizes. This scalability ensures that the system remains efficient as data volumes grow.
  • Automated Machine Learning (AutoML): H2O.ai simplifies the machine learning process with AutoML. This feature automates tasks such as feature engineering, model selection, and hyperparameter tuning, allowing data scientists to focus on higher-level tasks and reducing the barrier to entry for those new to machine learning.
  • Interpretability: Understanding machine learning models is crucial for trust and compliance. H2O.ai provides tools and methods for model interpretability, making it easier to explain model predictions and meet regulatory requirements in industries like finance and healthcare.
  • Efficiency: With H2O.ai, organizations can significantly reduce the time and resources required to develop and deploy machine learning models. This increased efficiency accelerates time-to-value for data-driven initiatives.
  • Open Source: H2O.ai embraces open source principles, making it accessible to a wide community of users and developers. This fosters innovation and collaboration, leading to continuous improvements in the platform.
  • Flexible Deployment Options: H2O.ai offers flexibility in deploying models. Users can choose to deploy models in cloud environments, on-premises, or even at the edge, ensuring that the solution aligns with their specific infrastructure and security requirements.
  • Support for Diverse Data Sources: H2O.ai supports data integration from a variety of sources, including structured and unstructured data, ensuring that organizations can leverage their entire data ecosystem for predictive analytics.
  • Comprehensive Ecosystem: H2O.ai provides a comprehensive ecosystem with various tools and integrations, allowing users to extend its functionality and integrate it seamlessly into their existing workflows and technologies.
read more...
  • Machine Learning: Comes with machine learning modules that can perform mass-segmentation and recommendations in seconds. These modules can be built and trained within minutes without ingesting data for training. 
  • Cloud Hosted: Handles all the hardware provisioning, warehousing and hardware management from the cloud. 
  • Real-Time Analytics: Large volumes of business data are quickly analyzed and presented to the user to ensure that insights and data discrepancies can be immediately uncovered. 
  • Automated Backups: Data is automatically stored and backed up multiple times a day. Data histories can be easily restored to prevent loss and major changes. 
  • Big Data Ecosystem Integrations: Integrate with other big data products such as Hadoop, Spark and Beam. Data can be directly written from the system into these products. 
  • Data Governance: Features such as access management, filter views, encryption and more are included in the software. The product is compliant with data regulations such as the GDPR. 
read more...
  • AutoML: H2O.ai's AutoML functionality automates the end-to-end machine learning process. It handles everything from data preprocessing to model selection and hyperparameter tuning, making machine learning accessible to a broader range of users.
  • Scalability: H2O.ai's platform is highly scalable, capable of handling both small and large datasets with ease. This ensures that organizations can work with data of varying sizes, accommodating growth and evolving needs.
  • Interpretability: Model interpretability is crucial for understanding how and why a model makes predictions. H2O.ai provides tools and techniques for explaining complex machine learning models, enhancing transparency and trust.
  • Efficiency: H2O.ai streamlines the machine learning workflow, reducing the time and resources required to develop and deploy models. This efficiency accelerates the delivery of data-driven insights and solutions.
  • Open Source: H2O.ai embraces an open-source philosophy, fostering collaboration and innovation. The platform is built on open-source technologies, allowing users to contribute to its development and benefit from a thriving community.
  • Flexible Deployment: Users can deploy models generated with H2O.ai in a variety of environments, including cloud, on-premises, and edge computing. This flexibility ensures that the solution aligns with an organization's specific infrastructure and security requirements.
  • Data Source Compatibility: H2O.ai supports diverse data sources, including structured and unstructured data, enabling organizations to leverage their entire data ecosystem for machine learning projects.
  • Comprehensive Ecosystem: H2O.ai offers a comprehensive ecosystem of tools and integrations that enhance its functionality. Users can extend and customize the platform to integrate seamlessly into their existing workflows and technology stack.
  • Advanced Algorithms: The platform includes a rich set of advanced machine learning algorithms, empowering data scientists and analysts to tackle complex problems and extract valuable insights from their data.
  • Model Management: H2O.ai provides robust model management capabilities, allowing users to monitor, update, and deploy models effectively. This feature ensures that models remain relevant and accurate over time.
read more...

Product Ranking

#10

among all
Big Data Analytics Tools

#65

among all
Big Data Analytics Tools

Find out who the leaders are

Analyst Rating Summary

we're gathering data
89
we're gathering data
83
we're gathering data
88
we're gathering data
86
Show More Show More

Analyst Ratings for Functional Requirements Customize This Data Customize This Data

BigQuery
H2O.ai
+ Add Product + Add Product
Augmented Analytics Computer Vision And Internet Of Things (IoT) Dashboarding And Data Visualization Data Management Data Preparation Geospatial Visualizations And Analysis Machine Learning Mobile Capabilities Platform Capabilities Reporting 83 88 86 100 65 100 0 57 0 25 50 75 100
we're gathering data
N/A
we're gathering data
N/A
we're gathering data
N/A
83%
0%
17%
we're gathering data
N/A
we're gathering data
N/A
we're gathering data
N/A
75%
0%
25%
we're gathering data
N/A
we're gathering data
N/A
we're gathering data
N/A
88%
0%
12%
we're gathering data
N/A
we're gathering data
N/A
we're gathering data
N/A
100%
0%
0%
we're gathering data
N/A
we're gathering data
N/A
we're gathering data
N/A
90%
10%
0%
we're gathering data
N/A
we're gathering data
N/A
we're gathering data
N/A
71%
0%
29%
we're gathering data
N/A
we're gathering data
N/A
we're gathering data
N/A
100%
0%
0%
we're gathering data
N/A
we're gathering data
N/A
we're gathering data
N/A
0%
0%
100%
we're gathering data
N/A
we're gathering data
N/A
we're gathering data
N/A
100%
0%
0%
we're gathering data
N/A
we're gathering data
N/A
we're gathering data
N/A
57%
0%
43%

Analyst Ratings for Technical Requirements Customize This Data Customize This Data

we're gathering data
N/A
we're gathering data
N/A
we're gathering data
N/A
100%
0%
0%
we're gathering data
N/A
we're gathering data
N/A
we're gathering data
N/A
96%
0%
4%
we're gathering data
N/A
we're gathering data
N/A
we're gathering data
N/A
100%
0%
0%

User Sentiment Summary

Excellent User Sentiment 724 reviews
we're gathering data
90%
of users recommend this product

BigQuery has a 'excellent' User Satisfaction Rating of 90% when considering 724 user reviews from 3 recognized software review sites.

we're gathering data
4.4 (292)
n/a
4.6 (283)
n/a
4.4 (149)
n/a

Awards

BigQuery stands above the rest by achieving an ‘Excellent’ rating as a User Favorite.

User Favorite Award

SelectHub research analysts have evaluated H2O.ai and concluded it earns best-in-class honors for Machine Learning.

Machine Learning Award

Synopsis of User Ratings and Reviews

Performance: The system can execute queries on massive amounts of data with agility, as specified by about 89% of users who mentioned performance.
Functionality: About 68% of users who reviewed functionality talked about its robust inbuilt features.
Ease of Use: The UI is simple and easy to navigate, according to about 72% of users who talked about user-friendliness.
Integration: Approximately 75% of reviewers who talked about integration said that it connects to numerous other tools seamlessly.
Scalability: All users who reviewed scalability said that the platform scales to thousands of servers.
Show more
Efficient AutoML: Users appreciate H2O.ai's AutoML capabilities, which streamline the machine learning process, making it accessible to a broader audience and saving time on model development.
Scalability: Many users highlight H2O.ai's ability to handle large datasets and scale seamlessly, accommodating the needs of businesses with varying data volumes.
Model Interpretability: H2O.ai's interpretability tools are praised for helping users understand and trust complex machine learning models, particularly in regulated industries.
Open Source Foundation: Users appreciate the open-source nature of H2O.ai, which fosters collaboration, transparency, and a thriving community of users and developers.
Comprehensive Ecosystem: The platform's extensive ecosystem of tools and integrations is a pro, as it allows users to extend and customize their workflows to suit their specific needs.
Advanced Algorithms: H2O.ai's rich library of advanced machine learning algorithms is well-received by users, enabling them to tackle complex problems effectively.
Model Management: Users find the model management capabilities of H2O.ai robust, making it easier to monitor, update, and deploy models for ongoing success.
Flexible Deployment Options: The flexibility to deploy models in various environments, including cloud and on-premises, is seen as a significant advantage by users, aligning with their infrastructure needs.
Support for Diverse Data Sources: Users value H2O.ai's support for a wide range of data sources, enabling them to leverage their entire data ecosystem for machine learning projects.
Time-to-Value: Many users report that H2O.ai accelerates their time-to-value for data-driven initiatives, allowing them to derive insights and achieve results more quickly.
Show more
Cost: Approximately 76% of users who mentioned cost complained that it’s expensive, and charges can rack up quickly if queries aren’t properly constructed.
Learning Curve: About 82% of users mentioned that the software has a steep learning curve.
Resources: About 89% of users who spoke about resources said that documentation and video tutorials are lacking and need improvement.
Visualization: Data visualization capabilities aren’t up to the mark, according to all users who talked about visualization.
Show more
Steep Learning Curve: Some users find H2O.ai challenging to learn, particularly for those new to machine learning, due to its advanced features and concepts.
Resource Intensive: Users with limited computational resources may encounter challenges when working with large datasets or complex models, as it can demand substantial computing power.
Data Quality Dependencies: H2O.ai's effectiveness relies heavily on high-quality, clean data, and users report that poor data quality can impact model performance and accuracy.
Complexity of Interpretation: While the platform offers interpretability tools, users mention that fully understanding highly complex machine learning models can still be challenging.
Integration Efforts: Integrating H2O.ai into existing IT environments can require significant effort and technical expertise, which may be a drawback for some organizations.
Customization Complexity: Extensive customization can be complex, and users with specific use cases may need advanced knowledge of the platform to tailor solutions effectively.
Scalability Management: While H2O.ai is highly scalable, effectively managing scaling processes, particularly for large enterprises, can be complex and may require specialized expertise.
Documentation Gaps: Some users have noted occasional gaps in documentation and support resources, which can hinder troubleshooting and development efforts.
Model Deployment Challenges: Deploying models in production environments, especially in highly regulated industries, can require additional considerations and expertise, which users find challenging.
Algorithm Selection: Choosing the right algorithm for specific use cases can be a hurdle, as it demands a deep understanding of the platform and the nuances of different algorithms.
Show more

Bigquery is a scalable big data warehouse solution. It enables users to pull correlated data streams using SQL like queries. Queries are executed fast regardless of the size of the datasets. It manages the dynamic distribution of workloads across computational clusters. The easy-to-navigate UI is robust and allows the user to create and execute machine learning models seamlessly. Users liked that it can connect to a variety of data analytics and visualization tools. However, users complained that query optimization is an additional hassle they have to deal with, as the solution is expensive and poorly constructed queries can quickly accumulate charges. It can be overwhelming for the non-technical user, and SQL coding knowledge is required to leverage its data analysis capabilities. Data visualization features are lacking and in need of improvement.

Show more

User reviews for H2O.ai offer insights into both its strengths and weaknesses. Many users praise its efficient AutoML capabilities, making machine learning more accessible and saving time in model development. The scalability of H2O.ai is also widely appreciated, accommodating various data volumes for businesses. Users find its model interpretability tools valuable, particularly in regulated industries, for understanding complex models. The platform's open-source foundation fosters collaboration and transparency, drawing positive remarks. Its comprehensive ecosystem and support for advanced algorithms are additional strengths, enabling users to extend and customize their workflows effectively. On the downside, some users highlight a steep learning curve, particularly for newcomers to machine learning. The resource-intensive nature of H2O.ai, especially when dealing with large datasets, can be a limitation for those with limited computational resources. Data quality dependencies impact model performance, and complex model interpretation remains a challenge. Integrating H2O.ai into existing IT environments can be labor-intensive, and extensive customization may demand advanced knowledge. Effective scalability management can also pose complexities. Occasional gaps in documentation and support resources have been noted, affecting troubleshooting and development efforts. Compared to similar products, users see H2O.ai as a robust contender, offering a rich set of features and a vibrant open-source community. However, its learning curve and resource requirements may be factors for consideration. Ultimately, user reviews reflect a mix of praise for H2O.ai's capabilities and challenges faced in mastering its advanced functionalities.

Show more

Screenshots

we're gathering data

Top Alternatives in Big Data Analytics Tools


Alteryx

Azure Synapse Analytics

Dataiku

H2O.ai

IBM Watson Studio

KNIME

Looker Studio

Oracle Analytics Cloud

Qlik Sense

RapidMiner

SageMaker

SAP Analytics Cloud

SAS Viya

Spotfire

Tableau

WE DISTILL IT INTO REAL REQUIREMENTS, COMPARISON REPORTS, PRICE GUIDES and more...

Compare products
Comparison Report
Just drag this link to the bookmark bar.
?
Table settings