SageMaker vs BigQuery

Last Updated:

Our analysts compared SageMaker vs BigQuery based on data from our 400+ point analysis of Big Data Analytics Tools, user reviews and our own crowdsourced data from our free software selection platform.

SageMaker Software Tool

Product Basics

Amazon SageMaker is a comprehensive machine learning platform by Amazon Web Services (AWS) designed to simplify the entire machine learning lifecycle. It empowers businesses to build, train, deploy, and manage machine learning models efficiently. Key features include robust data preprocessing tools, a wide selection of machine learning algorithms, and automated hyperparameter tuning. SageMaker's scalability ensures it's suitable for both small experiments and large-scale production deployments. It offers cost-efficiency with a pay-as-you-go pricing model and facilitates model management and monitoring. The platform integrates seamlessly with the AWS ecosystem, providing security and compliance features. SageMaker's AutoML capabilities make machine learning accessible to users of varying expertise. Overall, it streamlines the machine learning process, enabling organizations to harness the power of AI for improved decision-making and innovation.
read more...

BigQuery, a cloud-based data warehouse offered by Google, provides businesses with a scalable and cost-effective solution for analyzing massive datasets. It eliminates the need for infrastructure management, allowing users to focus on extracting valuable insights from their data using familiar SQL and built-in machine learning capabilities. BigQuery's serverless architecture enables efficient scaling, allowing you to query terabytes of data in seconds and petabytes in minutes.

BigQuery is particularly well-suited for organizations dealing with large and complex datasets that require rapid analysis. Its ability to integrate data from various sources, including Google Cloud Platform and other cloud providers, makes it a versatile tool for businesses with diverse data landscapes. Key benefits include scalability, ease of use, and cost-effectiveness. BigQuery offers a pay-as-you-go pricing model, allowing you to only pay for the resources you consume. You are billed based on the amount of data processed by your queries and the amount of data stored.

While BigQuery offers numerous advantages, it's important to consider factors such as your specific data analytics needs and budget when comparing it to similar products. User experiences with BigQuery have generally been positive, highlighting its speed, scalability, and ease of use. However, some users have noted that the pricing structure can become complex for highly demanding workloads.

read more...
$0.51 Hourly
Get a free price quote
Tailored to your specific needs
$6.25/TiB, Usage-Based
Get a free price quote
Tailored to your specific needs
Small 
i
Medium 
i
Large 
i
Small 
i
Medium 
i
Large 
i
Windows
Mac
Linux
Android
Chromebook
Windows
Mac
Linux
Android
Chromebook
Cloud
On-Premise
Mobile
Cloud
On-Premise
Mobile

Product Assistance

Documentation
In Person
Live Online
Videos
Webinars
Documentation
In Person
Live Online
Videos
Webinars
Email
Phone
Chat
FAQ
Forum
Knowledge Base
24/7 Live Support
Email
Phone
Chat
FAQ
Forum
Knowledge Base
24/7 Live Support

Product Insights

  • Accelerated Machine Learning: Amazon SageMaker offers a robust environment for building, training, and deploying machine learning models quickly and efficiently. It streamlines the ML workflow, reducing time-to-market.
  • Scalability: With SageMaker, you can effortlessly scale your machine learning projects. It can handle both small-scale experiments and large-scale production deployments, ensuring flexibility as your needs evolve.
  • Cost Efficiency: SageMaker's pay-as-you-go pricing model and built-in cost optimization tools help you manage expenses effectively. It optimizes resource allocation, preventing unnecessary spending.
  • Managed Infrastructure: The service abstracts the complexities of infrastructure management. This allows data scientists and developers to focus on model development rather than worrying about provisioning and maintaining infrastructure.
  • AutoML Capabilities: SageMaker provides AutoML features that automate aspects of model selection, hyperparameter tuning, and deployment, making it accessible to users with varying levels of expertise.
  • Robust Data Labeling: SageMaker includes data labeling tools and integration with Amazon Mechanical Turk, making it easier to annotate and prepare data for training, a critical step in machine learning workflows.
  • Secure and Compliant: Amazon SageMaker adheres to industry-leading security and compliance standards. It encrypts data, monitors access, and offers tools for compliance with regulations like GDPR and HIPAA.
  • Customizable Workflows: SageMaker's flexibility allows you to customize your machine learning workflows to suit your specific requirements. You can integrate your own algorithms, libraries, and tools seamlessly.
  • Model Management: It simplifies model management, versioning, and deployment, making it easy to keep track of different iterations of your models and roll out updates effortlessly.
  • Real-time Inference: SageMaker supports real-time model inference, enabling you to integrate machine learning predictions into your applications and services in real-time, enhancing user experiences.
read more...
  • Forecast and Plan Ahead: Ingest large amounts of data quickly to strengthen forecasting and boost decision-making processes. 
  • Deliver Insights: Find discrepancies in data and act on them accordingly. 
  • Focus on Analytics and Not Infrastructure: Handles large volumes of data without putting strain on an organization’s IT resources. 
  • Provide a User-Friendly Environment: It’s user-friendly for both technical and non-technical users. High-level knowledge is not necessary to operate the software effectively. 
  • Speed Up Processes: Utilizes fast SQL databases to quickly and efficiently analyze terabytes worth of data. 
read more...
  • Data Preprocessing Tools: SageMaker offers a range of data preprocessing capabilities, including data cleaning, transformation, and feature engineering, enabling users to prepare data efficiently for machine learning.
  • Wide Model Selection: Users have access to a diverse library of machine learning algorithms, from linear regression to deep learning frameworks like TensorFlow, making it suitable for a variety of use cases.
  • Hyperparameter Tuning: SageMaker automates hyperparameter optimization, helping users find the best configurations for their models, which can significantly improve model performance.
  • Model Training at Scale: It supports distributed training across multiple instances, reducing training times and enabling the handling of large datasets with ease.
  • Model Deployment: Users can deploy models as RESTful APIs, facilitating real-time inference in applications and services, and manage multiple model versions seamlessly.
  • AutoML Capabilities: SageMaker Autopilot streamlines model creation for users without deep machine learning expertise, automating tasks like feature engineering and model selection.
  • Monitoring and Debugging: It offers tools for model monitoring and debugging, helping users detect and address issues in deployed models, ensuring reliability in production.
  • Explainability and Bias Detection: SageMaker provides features for model explainability and bias detection, essential for understanding model predictions and addressing ethical considerations.
  • Integration with AWS Ecosystem: Seamlessly integrates with other AWS services, such as S3, Lambda, and Step Functions, facilitating end-to-end machine learning workflows within the AWS environment.
  • Security and Compliance: Offers comprehensive security features, including data encryption, access control, and compliance with industry standards, making it suitable for sensitive industries like healthcare and finance.
  • Cost Optimization: SageMaker includes cost optimization tools like automatic model scaling, enabling users to manage and optimize machine learning expenses efficiently.
read more...
  • Machine Learning: Comes with machine learning modules that can perform mass-segmentation and recommendations in seconds. These modules can be built and trained within minutes without ingesting data for training. 
  • Cloud Hosted: Handles all the hardware provisioning, warehousing and hardware management from the cloud. 
  • Real-Time Analytics: Large volumes of business data are quickly analyzed and presented to the user to ensure that insights and data discrepancies can be immediately uncovered. 
  • Automated Backups: Data is automatically stored and backed up multiple times a day. Data histories can be easily restored to prevent loss and major changes. 
  • Big Data Ecosystem Integrations: Integrate with other big data products such as Hadoop, Spark and Beam. Data can be directly written from the system into these products. 
  • Data Governance: Features such as access management, filter views, encryption and more are included in the software. The product is compliant with data regulations such as the GDPR. 
read more...

Product Ranking

#28

among all
Big Data Analytics Tools

#10

among all
Big Data Analytics Tools

Find out who the leaders are

Analyst Rating Summary

84
we're gathering data
84
we're gathering data
84
we're gathering data
73
we're gathering data
Show More Show More

Analyst Ratings for Functional Requirements Customize This Data Customize This Data

SageMaker
BigQuery
+ Add Product + Add Product
Augmented Analytics Computer Vision And Internet Of Things (IoT) Dashboarding And Data Visualization Data Management Data Preparation Geospatial Visualizations And Analysis Machine Learning Mobile Capabilities Platform Capabilities Reporting 84 84 73 76 81 89 0 63 0 25 50 75 100
83%
0%
17%
we're gathering data
N/A
we're gathering data
N/A
we're gathering data
N/A
63%
13%
24%
we're gathering data
N/A
we're gathering data
N/A
we're gathering data
N/A
75%
0%
25%
we're gathering data
N/A
we're gathering data
N/A
we're gathering data
N/A
71%
0%
29%
we're gathering data
N/A
we're gathering data
N/A
we're gathering data
N/A
100%
0%
0%
we're gathering data
N/A
we're gathering data
N/A
we're gathering data
N/A
86%
0%
14%
we're gathering data
N/A
we're gathering data
N/A
we're gathering data
N/A
87%
3%
10%
we're gathering data
N/A
we're gathering data
N/A
we're gathering data
N/A
0%
0%
100%
we're gathering data
N/A
we're gathering data
N/A
we're gathering data
N/A
83%
0%
17%
we're gathering data
N/A
we're gathering data
N/A
we're gathering data
N/A
29%
57%
14%
we're gathering data
N/A
we're gathering data
N/A
we're gathering data
N/A

Analyst Ratings for Technical Requirements Customize This Data Customize This Data

100%
0%
0%
we're gathering data
N/A
we're gathering data
N/A
we're gathering data
N/A
82%
4%
14%
we're gathering data
N/A
we're gathering data
N/A
we're gathering data
N/A
100%
0%
0%
we're gathering data
N/A
we're gathering data
N/A
we're gathering data
N/A

User Sentiment Summary

we're gathering data
Excellent User Sentiment 724 reviews
we're gathering data
90%
of users recommend this product

BigQuery has a 'excellent' User Satisfaction Rating of 90% when considering 724 user reviews from 3 recognized software review sites.

n/a
4.4 (292)
n/a
4.6 (283)
n/a
4.4 (149)

Awards

we're gathering data

BigQuery stands above the rest by achieving an ‘Excellent’ rating as a User Favorite.

User Favorite Award

Synopsis of User Ratings and Reviews

Robust Feature Set: Users appreciate SageMaker's comprehensive feature set, which covers data preprocessing, model training, deployment, and monitoring, all in one platform.
Scalability: Many users highlight SageMaker's ability to scale seamlessly, accommodating both small-scale experiments and large-scale production workloads.
Cost-Efficiency: The pay-as-you-go pricing model and cost optimization tools receive positive reviews for helping users manage machine learning expenses effectively.
Integration with AWS: Users value SageMaker's integration with the broader AWS ecosystem, simplifying workflows and enhancing compatibility with other AWS services.
AutoML Capabilities: SageMaker's AutoML features, such as Autopilot, receive praise for automating complex machine learning tasks, making it accessible to a broader range of users.
Model Management: Users find the platform's model versioning and management tools useful for keeping track of models and deploying updates efficiently.
Security and Compliance: The robust security features, including data encryption and compliance with industry standards, are seen as a critical advantage for users with stringent data security requirements.
Real-time Inference: Users appreciate the capability to deploy models as RESTful APIs, enabling real-time predictions in applications and services, enhancing user experiences.
Community Support: Some users highlight the active SageMaker community, which provides valuable resources, tutorials, and support for users at all skill levels.
Extensive Documentation: Users find the platform's extensive documentation and tutorials helpful for onboarding and troubleshooting, contributing to a smoother user experience.
Show more
Performance: The system can execute queries on massive amounts of data with agility, as specified by about 89% of users who mentioned performance.
Functionality: About 68% of users who reviewed functionality talked about its robust inbuilt features.
Ease of Use: The UI is simple and easy to navigate, according to about 72% of users who talked about user-friendliness.
Integration: Approximately 75% of reviewers who talked about integration said that it connects to numerous other tools seamlessly.
Scalability: All users who reviewed scalability said that the platform scales to thousands of servers.
Show more
Complex Learning Curve: Users often find SageMaker challenging for beginners due to its extensive feature set, requiring significant time and effort to master.
Cost Management: Some users report difficulty in managing costs effectively, especially during large-scale model training, which can lead to unexpected expenses.
Limited Customization: Advanced users may encounter limitations when attempting to customize certain aspects of the SageMaker environment and algorithms.
Data Privacy Concerns: The cloud-based data storage raises concerns for users with strict data locality requirements or those subject to stringent data privacy regulations.
Dependency on AWS: To maximize SageMaker's capabilities, users often need to rely on the broader AWS ecosystem, potentially resulting in vendor lock-in.
Offline Processing Challenges: While designed for real-time inference, SageMaker may not be optimized for batch processing or offline use cases, limiting its versatility.
Resource Constraints: The platform's performance can be constrained by the chosen instance types, affecting the speed of model training and inference.
Complexity for Small Projects: Some users find SageMaker's robust features excessive for small-scale projects, leading to a steeper learning curve without commensurate benefits.
AutoML Limitations: While AutoML is a strength, it may not cover all use cases, and users may need to resort to manual interventions for specific scenarios.
Documentation Gaps: A few users have reported occasional gaps or ambiguities in the platform's documentation, which can be frustrating for troubleshooting and implementation.
Show more
Cost: Approximately 76% of users who mentioned cost complained that it’s expensive, and charges can rack up quickly if queries aren’t properly constructed.
Learning Curve: About 82% of users mentioned that the software has a steep learning curve.
Resources: About 89% of users who spoke about resources said that documentation and video tutorials are lacking and need improvement.
Visualization: Data visualization capabilities aren’t up to the mark, according to all users who talked about visualization.
Show more

User reviews of Amazon SageMaker reveal a platform appreciated for its robust feature set, scalability, and cost-efficiency. Many users find its comprehensive tools for data preprocessing, model training, deployment, and monitoring to be a significant strength. Scalability is another key advantage, with SageMaker accommodating both small-scale experiments and large-scale production workloads effectively. However, some users point out that SageMaker has a steep learning curve, particularly for beginners, and cost management can be challenging, especially during extensive model training. The platform's dependency on the broader AWS ecosystem can lead to vendor lock-in, which may not be ideal for organizations seeking flexibility. SageMaker's AutoML capabilities, such as Autopilot, are praised for automating complex tasks, but some advanced users note limitations in customization. Additionally, while designed for real-time inference, it may not be optimized for batch processing or offline use cases. In comparison to similar products, SageMaker stands out for its deep integration with AWS services, making it a preferred choice for those already within the AWS ecosystem. However, the learning curve and potential cost challenges are factors that users weigh against its benefits. The platform's active community support and extensive documentation receive positive mentions, contributing to a smoother user experience. Overall, Amazon SageMaker is a powerful tool for machine learning but requires careful consideration of its complexities and potential cost implications.

Show more

Bigquery is a scalable big data warehouse solution. It enables users to pull correlated data streams using SQL like queries. Queries are executed fast regardless of the size of the datasets. It manages the dynamic distribution of workloads across computational clusters. The easy-to-navigate UI is robust and allows the user to create and execute machine learning models seamlessly. Users liked that it can connect to a variety of data analytics and visualization tools. However, users complained that query optimization is an additional hassle they have to deal with, as the solution is expensive and poorly constructed queries can quickly accumulate charges. It can be overwhelming for the non-technical user, and SQL coding knowledge is required to leverage its data analysis capabilities. Data visualization features are lacking and in need of improvement.

Show more

Screenshots

we're gathering data

Top Alternatives in Big Data Analytics Tools


Alteryx

Azure Synapse Analytics

Dataiku

H2O.ai

IBM Watson Studio

KNIME

Looker Studio

Oracle Analytics Cloud

Qlik Sense

RapidMiner

SAP Analytics Cloud

SAS Viya

Spotfire

Tableau

WE DISTILL IT INTO REAL REQUIREMENTS, COMPARISON REPORTS, PRICE GUIDES and more...

Compare products
Comparison Report
Just drag this link to the bookmark bar.
?
Table settings