Dataflow vs InfoSphere Information Server

Last Updated:

Our analysts compared Dataflow vs InfoSphere Information Server based on data from our 400+ point analysis of ETL Tools, user reviews and our own crowdsourced data from our free software selection platform.

Product Basics

Dataflow, a streaming analytics software, ingests and processes high-volume, real-time data streams. Imagine it as a powerful pipeline continuously analyzing incoming data, enabling you to react instantly to insights. It caters to businesses needing to analyze data in motion, like financial institutions tracking stock prices or sensor-driven applications monitoring equipment performance. Dataflow's key benefits include scalability to handle massive data volumes, flexibility to adapt to various data sources and analysis needs, and unified processing for both batch and real-time data. Popular features involve visual interface for building data pipelines, built-in machine learning tools for pattern recognition, and seamless integration with other cloud services. Compared to similar products, user experiences highlight Dataflow's ease of use, cost-effectiveness (pay-per-use based on data processed), and serverless architecture, eliminating infrastructure management overheads. However, some users mention limitations in customizability and occasional processing delays for complex workloads.

Pros
  • Easy to use
  • Cost-effective
  • Serverless architecture
  • Scalable
  • Flexible
Cons
  • Limited customization
  • Occasional processing delays
  • Learning curve for complex pipelines
  • Could benefit from more built-in templates
  • Dependency on other cloud services
read more...
InfoSphere Information Server is a data integration powerhouse designed to unify information across complex, diverse systems. It excels at extracting, transforming, and loading data (ETL/ELT) for tasks like building data warehouses, powering analytics, and driving business insights. Best suited for large enterprises with demanding data needs and dedicated IT resources, InfoSphere boasts robust features like comprehensive data source/target connectors, powerful transformation tools, and advanced governance capabilities. User feedback highlights its scalability, security, and job automation as key benefits. However, its complexity and steep learning curve can be daunting for smaller setups. Additionally, the high licensing costs and resource-intensive nature might dissuade budget-conscious organizations. Compared to other data integration tools, InfoSphere leans towards high-volume, mission-critical scenarios, while alternative options might offer simpler setups or cater to broader use cases. Choosing the right fit depends on individual needs and priorities. Ultimately, InfoSphere Information Server shines when organizations need a robust, feature-rich platform to conquer complex data challenges, even at the cost of increased upfront investment and initial learning hurdles.

Pros
  • Powerful ETL & ELT capabilities
  • Wide range of data sources & targets
  • Job scheduling & monitoring
  • Data quality & transformation tools
  • Scalable & secure architecture
Cons
  • Steep learning curve & complexity
  • High licensing costs
  • Limited out-of-the-box connectors
  • Performance bottlenecks with large datasets
  • Resource-intensive for deployment & maintenance
read more...
$1/250GB of Processed Data
Get a free price quote
Tailored to your specific needs
$20,000 Annually
Free Trial is unavailable →
Get a free price quote
Tailored to your specific needs
Small 
i
Medium 
i
Large 
i
Small 
i
Medium 
i
Large 
i
Windows
Mac
Linux
Android
Chromebook
Windows
Mac
Linux
Android
Chromebook
Cloud
On-Premise
Mobile
Cloud
On-Premise
Mobile

Product Assistance

Documentation
In Person
Live Online
Videos
Webinars
Documentation
In Person
Live Online
Videos
Webinars
Email
Phone
Chat
FAQ
Forum
Knowledge Base
24/7 Live Support
Email
Phone
Chat
FAQ
Forum
Knowledge Base
24/7 Live Support

Product Insights

  • Reduce TCO: Manage seasonal and spiky task overloads by autoscaling resources as per the task load. Reduce batch-processing costs by using advanced job scheduling and shuffling techniques. 
  • Go Serverless: Do away with operational overhead from data engineering tasks. Allow teams to focus on coding, instead of managing server clusters. 
  • Integrate All Data: Replicates data from Google Cloud Storage into BigQuery, PostgreSQL or Cloud Spanner. Ingest data changes from MySQL, SQL Server and Db2.
  • Drive Analytics with AI: Build ML-powered data pipelines through support for TensorFlow Extended (TFX). Enables predictive analytics, fraud detection, real-time personalization and more. 
read more...
  • Unified Data Landscape: Break down data silos and seamlessly integrate information from diverse sources, including databases, applications, and cloud platforms, providing a holistic view for improved decision-making.
  • Enhanced Data Quality: Ensure data accuracy and consistency through powerful cleansing, standardization, and transformation tools, minimizing errors and boosting trust in your data assets.
  • Streamlined Data Movement: Automate and orchestrate data movement using flexible ETL/ELT workflows, speeding up data delivery and reducing manual effort for critical business processes.
  • Powerful Data Transformation: Manipulate and enrich data to meet specific needs through a comprehensive set of transformation functions, unlocking its full potential for analytics and reporting.
  • Scalable and Secure Architecture: Handle large data volumes and complex integrations with confidence thanks to a robust and secure architecture, ensuring uninterrupted data flow and safeguarding sensitive information.
  • Improved Operational Efficiency: Automate routine data tasks, reduce IT workload, and optimize resource utilization, freeing up staff and resources for higher-value activities.
  • Enhanced Data Governance: Implement data governance policies and ensure compliance with regulations through features like lineage tracking and access controls, fostering data transparency and responsible usage.
  • Greater Business Agility: Respond rapidly to changing data needs and support new initiatives with agile data integration capabilities, empowering faster time-to-market and increased business flexibility.
  • Improved Collaboration and Decision-Making: Foster greater collaboration across teams by providing everyone with access to reliable and consistent data, leading to better informed decisions and data-driven strategies.
  • Reduced Integration Costs: Streamline data management processes, eliminate data redundancies, and optimize infrastructure usage by consolidating data integration needs into a single platform, potentially leading to cost savings.
read more...
  • Pipeline Authoring: Build data processing workflows with ML capabilities through Google’s Vertex AI Notebooks and deploy with the Dataflow runner. Design Apache Beam pipelines in a read-eval-print-loop (REVL) workflow. 
    • Templates: Run data processing tasks with Google-provided templates. Package the pipeline into a Docker image, then save as a Flex template in Cloud Storage to reuse and share with others. 
  • Streaming Analytics: Join streaming data from publish/subscribe (Pub/Sub) messaging systems with files in Cloud Storage and tables in BigQuery. Build real-time dashboards with Google Sheets and other BI tools. 
  • Workload Optimization: Automatically partitions data inputs and consistently rebalances for optimal performance. Reduces the impact of hot keys on pipeline functioning. 
    • Horizontal Autoscaling:  Automatically chooses and reallocates the number of worker instances required to run the job. 
    • Task Shuffling: Moves pipeline tasks out of the worker VMs into the backend, separating compute from state storage. 
  • Security: Turn off public IPs; secure data with a customer-managed encryption key (CMEK). Mitigate the risk of data exfiltration by integrating with VPC Service Controls. 
  • Pipeline Monitoring: Monitor job status, view execution details and receive result updates through the monitoring or command-line interface. Troubleshoot batch and streaming pipelines with inline monitoring. Set alerts for exceptions like stale data and high system latency. 
read more...
  • Data Integration: Collect, transform and share large amounts of complex data assets across the organization. Reduce development time, and scale flexibly by leveraging built-in data transformation functions. Deliver data in real time to business applications in bulk, virtually or through change data capture (CDC). 
  • Data Quality: Cleanse and validate data — in batches and real time — then load it into analytical views for consistent monitoring. Establish data quality metrics across the organization by reusing these data views. Ensure consistent information organization-wide by linking related records across systems. 
    • Business Glossary: Create a single source of truth – consolidate disparate data into unique, reliable records and load into repositories and master data applications. Share insights with confidence powered by complete access to proof of lineage and data quality. A centralized hub maintains data governance rules. 
  • Information Governance Catalog: Empower data scientists and analysts to explore and analyze business data in compliance with enterprise governance standards. Create, manage and share a common business language, design and apply rules and track data lineage. Extend on-premise governance investment to the cloud by integrating with IBM Watson Knowledge Catalog. 
  • Metadata Repository: Share imported metadata and other assets in any server component across. the organization. Stores project configurations, reports and results for all the server’s components in one unified repository 
read more...

Product Ranking

#15

among all
ETL Tools

#32

among all
ETL Tools

Find out who the leaders are

Analyst Rating Summary

94
97
93
100
78
99
92
94
Show More Show More
Data Transformation
Metadata Management
Platform Security
Workflow Management
Data Delivery
Data Delivery
Metadata Management
Platform Security
Workflow Management
Data Quality

Analyst Ratings for Functional Requirements Customize This Data Customize This Data

Dataflow
InfoSphere Information Server
+ Add Product + Add Product
Data Delivery Data Quality Data Sources And Targets Connectivity Data Transformation Metadata Management Platform Capabilities Workflow Management 93 78 92 100 100 0 100 100 99 94 95 100 0 100 0 25 50 75 100
80%
20%
0%
100%
0%
0%
58%
25%
17%
100%
0%
0%
86%
0%
14%
86%
14%
0%
100%
0%
0%
95%
0%
5%
100%
0%
0%
100%
0%
0%
we're gathering data
N/A
we're gathering data
N/A
we're gathering data
N/A
we're gathering data
N/A
we're gathering data
N/A
we're gathering data
N/A
100%
0%
0%
100%
0%
0%

Analyst Ratings for Technical Requirements Customize This Data Customize This Data

we're gathering data
N/A
we're gathering data
N/A
we're gathering data
N/A
we're gathering data
N/A
we're gathering data
N/A
we're gathering data
N/A
100%
0%
0%
100%
0%
0%

User Sentiment Summary

Great User Sentiment 106 reviews
Good User Sentiment 80 reviews
86%
of users recommend this product

Dataflow has a 'great' User Satisfaction Rating of 86% when considering 106 user reviews from 3 recognized software review sites.

77%
of users recommend this product

InfoSphere Information Server has a 'good' User Satisfaction Rating of 77% when considering 80 user reviews from 3 recognized software review sites.

4.1 (31)
4.0 (21)
4.4 (59)
4.6 (27)
4.2 (16)
3.1 (32)

Awards

SelectHub research analysts have evaluated Dataflow and concluded it earns best-in-class honors for Data Transformation and Workflow Management.

Data Transformation Award
Workflow Management Award

SelectHub research analysts have evaluated InfoSphere Information Server and concluded it earns best-in-class honors for Workflow Management.

Workflow Management Award

Synopsis of User Ratings and Reviews

Ease of use: Users consistently praise Dataflow's intuitive interface, drag-and-drop pipeline building, and visual representations of data flows, making it accessible even for those without extensive coding experience.
Cost-effectiveness: Dataflow's pay-as-you-go model is highly appealing, as users only pay for the compute resources they actually use, aligning costs with data processing needs and avoiding upfront infrastructure investments.
Serverless architecture: Users appreciate Dataflow's ability to automatically scale resources based on workload, eliminating the need for manual provisioning and management of servers, reducing operational overhead and streamlining data processing.
Scalability: Dataflow's ability to seamlessly handle massive data volumes and fluctuating traffic patterns is highly valued by users, ensuring reliable performance even during peak usage periods or when dealing with large datasets.
Integration with other cloud services: Users find Dataflow's integration with other cloud services, such as storage, BigQuery, and machine learning tools, to be a significant advantage, enabling the creation of comprehensive data pipelines and analytics workflows within a unified ecosystem.
Show more
Powerful Data Handling: Handles complex ETL/ELT processes and diverse data sources (relational, flat files, cloud platforms) with ease, streamlining data movement and integration.
Enhanced Data Quality: Ensures data accuracy and consistency through robust cleansing, validation, and transformation tools, boosting trust and reliability in data insights.
Scalability and Security: Supports large data volumes and complex integrations with confidence, safeguarding sensitive information through granular access controls and encryption.
Job Automation and Monitoring: Automates data pipelines and workflows, reducing manual effort and simplifying task management with comprehensive monitoring capabilities.
Improved Operational Efficiency: Centralizes data integration processes, eliminates data silos, and frees up IT resources for higher-value tasks, leading to cost savings and increased productivity.
Show more
Limited customization: Some users express constraints in tailoring certain aspects of Dataflow's behavior to precisely match specific use cases, potentially requiring workarounds or compromises.
Occasional processing delays: While generally efficient, users have reported occasional delays in processing, especially with complex pipelines or during periods of high data volume, which could impact real-time analytics.
Learning curve for complex pipelines: Building intricate Dataflow pipelines can involve a steeper learning curve, especially for those less familiar with Apache Beam concepts or distributed data processing principles.
Dependency on other cloud services: Dataflow's seamless integration with other cloud services is also seen as a potential drawback by some users, as it can increase vendor lock-in and limit portability across different cloud platforms.
Need for more built-in templates: Users often request a wider range of pre-built templates and integrations with external data sources to accelerate pipeline development and streamline common use cases.
Show more
Steep Learning Curve: Complex interface and feature-rich platform require significant training and expertise, even for experienced data professionals.
High Cost of Ownership: Licensing fees, maintenance, and potential hardware/infrastructure upgrades can make it a costly solution for smaller organizations or simpler data needs.
Limited Out-of-the-Box Connectors: May require custom development or third-party tools for integration with certain data sources or applications, increasing implementation complexity and costs.
Performance Bottlenecks: Can experience slowdowns or scalability issues with very large datasets or intricate ETL/ELT processes, demanding careful optimization and resource allocation.
Limited Cloud-Native Functionality: Core features are primarily designed for on-premises deployments, with cloud options requiring additional setup and configuration, potentially hindering agility and flexibility.
Show more

Dataflow, a cloud-based streaming analytics platform, garners praise for its ease of use, scalability, and cost-effectiveness. Users, particularly those new to streaming analytics or with limited coding experience, appreciate the intuitive interface and visual pipeline building, making it a breeze to get started compared to competitors that require more programming expertise. Additionally, Dataflow's serverless architecture and pay-as-you-go model are highly attractive, eliminating infrastructure management burdens and aligning costs with actual data processing needs, unlike some competitors with fixed costs or complex pricing structures. However, Dataflow isn't without its drawbacks. Some users find it less customizable than competing solutions, potentially limiting its suitability for highly specific use cases. Occasional processing delays, especially for intricate pipelines or high data volumes, can also be a concern, impacting real-time analytics capabilities. Furthermore, while Dataflow integrates well with other Google Cloud services, this tight coupling can restrict portability to other cloud platforms, something competitors with broader cloud compatibility might offer. Ultimately, Dataflow's strengths in user-friendliness, scalability, and cost-effectiveness make it a compelling choice for those new to streaming analytics or seeking a flexible, cost-conscious solution. However, its limitations in customization and potential processing delays might necessitate exploring alternatives for highly specialized use cases or mission-critical, real-time analytics.

Show more

User reviews of InfoSphere Information Server paint a picture of a powerful data integration tool, capable of handling complex tasks and diverse data sources. Admiration for its robust ETL/ELT capabilities, data quality tools, and secure architecture echoes frequently, with users citing improved data accuracy and streamlined data movement as major benefits. Automation features and job monitoring are also praised for boosting operational efficiency and freeing up resources. However, the praise comes with caveats. The steep learning curve and demanding resource requirements are consistent gripes, making InfoSphere a better fit for larger organizations with dedicated IT expertise and infrastructure. The high cost of ownership, including licensing, maintenance, and potential hardware upgrades, further strengthens this point. Additionally, the limited out-of-the-box connectors and potential performance bottlenecks with massive datasets are concerns for some users. Compared to competitors, InfoSphere shines in its scalability and security, catering to high-volume, mission-critical scenarios. However, users also acknowledge the presence of simpler, more user-friendly options that might be better suited for smaller setups or less complex data needs. Ultimately, the choice boils down to individual priorities. If data volume, security, and advanced features are paramount, InfoSphere stands out, despite its demanding nature. But for those seeking a smoother learning curve or broader use cases, other solutions might offer a better fit. In essence, user reviews reveal InfoSphere Information Server as a powerful tool for complex data challenges, but its strengths come with a price tag and learning curve. Carefully evaluating data needs and priorities is crucial before choosing this data integration powerhouse.

Show more

Screenshots

Top Alternatives in ETL Tools


AWS Glue

Azure Data Factory

Cloud Data Fusion

DataStage

Fivetran

Hevo

IDMC

Informatica PowerCenter

InfoSphere Information Server

Integrate.io

Oracle Data Integrator

Pentaho

Qlik Talend Data Integration

SAP Data Services

SAS Data Management

Skyvia

SQL Server

SQL Server Integration Services

Talend

TIBCO Cloud Integration

Related Categories

Head-to-Head Comparison

WE DISTILL IT INTO REAL REQUIREMENTS, COMPARISON REPORTS, PRICE GUIDES and more...

Compare products
Comparison Report
Just drag this link to the bookmark bar.
?
Table settings