Informatica PowerCenter vs InfoSphere Information Server

Last Updated:

Our analysts compared Informatica PowerCenter vs InfoSphere Information Server based on data from our 400+ point analysis of ETL Tools, user reviews and our own crowdsourced data from our free software selection platform.

Product Basics

Informatica PowerCenter is data integration software for enterprises of all sizes with connectors and metadata. It relies on robust business logic to deliver data on demand.

For cloud users, the vendor offers connectivity to Amazon S3, Microsoft Azure Blob Storage and Google Cloud Storage. It also reads data residing on mainframe systems using PowerCenterExchange and connects to big data platforms like Hadoop and HDFS.

The vendor enables businesses to move PowerCenter loads to the cloud. What's more, AI and automation can drive 95% of cloud upgrades if businesses opt for them. It scales to validate data quality, perform fuzzy matches and identify data anomalies in the cloud.

Pros
  • User-friendly
  • Wide range of connectors
  • Scalable and reliable
  • Robust security features
  • Integrates with Informatica suite
Cons
  • Steeper learning curve
  • Can be expensive
  • Performance issues with large datasets
  • Limited cloud app support
  • Complex to manage
read more...
InfoSphere Information Server is a data integration powerhouse designed to unify information across complex, diverse systems. It excels at extracting, transforming, and loading data (ETL/ELT) for tasks like building data warehouses, powering analytics, and driving business insights. Best suited for large enterprises with demanding data needs and dedicated IT resources, InfoSphere boasts robust features like comprehensive data source/target connectors, powerful transformation tools, and advanced governance capabilities. User feedback highlights its scalability, security, and job automation as key benefits. However, its complexity and steep learning curve can be daunting for smaller setups. Additionally, the high licensing costs and resource-intensive nature might dissuade budget-conscious organizations. Compared to other data integration tools, InfoSphere leans towards high-volume, mission-critical scenarios, while alternative options might offer simpler setups or cater to broader use cases. Choosing the right fit depends on individual needs and priorities. Ultimately, InfoSphere Information Server shines when organizations need a robust, feature-rich platform to conquer complex data challenges, even at the cost of increased upfront investment and initial learning hurdles.

Pros
  • Powerful ETL & ELT capabilities
  • Wide range of data sources & targets
  • Job scheduling & monitoring
  • Data quality & transformation tools
  • Scalable & secure architecture
Cons
  • Steep learning curve & complexity
  • High licensing costs
  • Limited out-of-the-box connectors
  • Performance bottlenecks with large datasets
  • Resource-intensive for deployment & maintenance
read more...
$5,000 Annually
Get a free price quote
Tailored to your specific needs
$20,000 Annually
Free Trial is unavailable →
Get a free price quote
Tailored to your specific needs
Small 
i
Medium 
i
Large 
i
Small 
i
Medium 
i
Large 
i
Windows
Mac
Linux
Android
Chromebook
Windows
Mac
Linux
Android
Chromebook
Cloud
On-Premise
Mobile
Cloud
On-Premise
Mobile

Product Assistance

Documentation
In Person
Live Online
Videos
Webinars
Documentation
In Person
Live Online
Videos
Webinars
Email
Phone
Chat
FAQ
Forum
Knowledge Base
24/7 Live Support
Email
Phone
Chat
FAQ
Forum
Knowledge Base
24/7 Live Support

Product Insights

  • Automate Workflows: Ditch the manual grind and leave the nitty-gritty to automation. Once set up, it performs ETL without needing the IT team.
  • Accelerate Insight: Make informed decisions based on hardcore data. Readymade connectors and a graphical UI speed up otherwise complex data integration tasks.
  • Reduce Costs: Cut the overheads due to bad data and grow your business with accurate and reliable insight. Minimize errors and related costs, thanks to its inherent data quality features. Reduce testing time by 50 to 90 percent with automation.
  • Improve Outcomes: Grab opportunities with confidence and turn them into profit-making ventures. Thanks to data quality checks, it pushes accurate and reliable data to downstream processes.
  • Streamline Decisions: Drive a data culture and encourage users to work independently with reports and dashboards. Promote decision-making across the organization.
  • Enhance Offerings: Deliver tailored products based on buyer needs and preferences. This approach combines information from several sources, giving a complete picture of how people perceive the product.
read more...
  • Unified Data Landscape: Break down data silos and seamlessly integrate information from diverse sources, including databases, applications, and cloud platforms, providing a holistic view for improved decision-making.
  • Enhanced Data Quality: Ensure data accuracy and consistency through powerful cleansing, standardization, and transformation tools, minimizing errors and boosting trust in your data assets.
  • Streamlined Data Movement: Automate and orchestrate data movement using flexible ETL/ELT workflows, speeding up data delivery and reducing manual effort for critical business processes.
  • Powerful Data Transformation: Manipulate and enrich data to meet specific needs through a comprehensive set of transformation functions, unlocking its full potential for analytics and reporting.
  • Scalable and Secure Architecture: Handle large data volumes and complex integrations with confidence thanks to a robust and secure architecture, ensuring uninterrupted data flow and safeguarding sensitive information.
  • Improved Operational Efficiency: Automate routine data tasks, reduce IT workload, and optimize resource utilization, freeing up staff and resources for higher-value activities.
  • Enhanced Data Governance: Implement data governance policies and ensure compliance with regulations through features like lineage tracking and access controls, fostering data transparency and responsible usage.
  • Greater Business Agility: Respond rapidly to changing data needs and support new initiatives with agile data integration capabilities, empowering faster time-to-market and increased business flexibility.
  • Improved Collaboration and Decision-Making: Foster greater collaboration across teams by providing everyone with access to reliable and consistent data, leading to better informed decisions and data-driven strategies.
  • Reduced Integration Costs: Streamline data management processes, eliminate data redundancies, and optimize infrastructure usage by consolidating data integration needs into a single platform, potentially leading to cost savings.
read more...
  • Prototyping: Test data flows by building a preview version before creating the final workflow.
  • In-Production Testing: Identify issues early by checking data quality in production workflows.
  • Data Transformation: Interpret various data formats like XML, PDF, JSON and IoT data.
  • Live Analytics: Respond to market changes proactively using the latest insight, thanks to change data capture. Handles large volumes with dynamic partitioning and scalability.
  • Scalability: Handle growing data sizes, types, sources, projects and users without breaking into a sweat.
  • Collaboration: Gain visibility into where data originated and which processes it underwent before reaching the system. Analyze the possible impact of a decision before signing off on it. Keep business and IT teams on the same page with shared metadata.
  • Early Warning: Spot glitches and improper usage of resources early on. Get alerts when something goes wrong with data integration processes.
read more...
  • Data Integration: Collect, transform and share large amounts of complex data assets across the organization. Reduce development time, and scale flexibly by leveraging built-in data transformation functions. Deliver data in real time to business applications in bulk, virtually or through change data capture (CDC). 
  • Data Quality: Cleanse and validate data — in batches and real time — then load it into analytical views for consistent monitoring. Establish data quality metrics across the organization by reusing these data views. Ensure consistent information organization-wide by linking related records across systems. 
    • Business Glossary: Create a single source of truth – consolidate disparate data into unique, reliable records and load into repositories and master data applications. Share insights with confidence powered by complete access to proof of lineage and data quality. A centralized hub maintains data governance rules. 
  • Information Governance Catalog: Empower data scientists and analysts to explore and analyze business data in compliance with enterprise governance standards. Create, manage and share a common business language, design and apply rules and track data lineage. Extend on-premise governance investment to the cloud by integrating with IBM Watson Knowledge Catalog. 
  • Metadata Repository: Share imported metadata and other assets in any server component across. the organization. Stores project configurations, reports and results for all the server’s components in one unified repository 
read more...

Product Ranking

#20

among all
ETL Tools

#32

among all
ETL Tools

Find out who the leaders are

Analyst Rating Summary

96
97
100
100
100
99
94
94
Show More Show More
Data Delivery
Data Quality
Metadata Management
Platform Security
Workflow Management
Data Delivery
Metadata Management
Platform Security
Workflow Management
Data Quality

Analyst Ratings for Functional Requirements Customize This Data Customize This Data

Informatica PowerCenter
InfoSphere Information Server
+ Add Product + Add Product
Data Delivery Data Quality Data Sources And Targets Connectivity Data Transformation Metadata Management Platform Capabilities Workflow Management 100 100 94 91 100 0 100 100 99 94 95 100 0 100 0 25 50 75 100
100%
0%
0%
100%
0%
0%
100%
0%
0%
100%
0%
0%
89%
0%
11%
86%
14%
0%
91%
0%
9%
95%
0%
5%
100%
0%
0%
100%
0%
0%
we're gathering data
N/A
we're gathering data
N/A
we're gathering data
N/A
we're gathering data
N/A
we're gathering data
N/A
we're gathering data
N/A
100%
0%
0%
100%
0%
0%

Analyst Ratings for Technical Requirements Customize This Data Customize This Data

we're gathering data
N/A
we're gathering data
N/A
we're gathering data
N/A
we're gathering data
N/A
we're gathering data
N/A
we're gathering data
N/A
100%
0%
0%
100%
0%
0%

User Sentiment Summary

Great User Sentiment 773 reviews
Good User Sentiment 80 reviews
85%
of users recommend this product

Informatica PowerCenter has a 'great' User Satisfaction Rating of 85% when considering 773 user reviews from 4 recognized software review sites.

77%
of users recommend this product

InfoSphere Information Server has a 'good' User Satisfaction Rating of 77% when considering 80 user reviews from 3 recognized software review sites.

4.4 (83)
4.0 (21)
4.5 (41)
n/a
4.3 (557)
4.6 (27)
3.9 (92)
3.1 (32)

Awards

SelectHub research analysts have evaluated Informatica PowerCenter and concluded it earns best-in-class honors for Workflow Management.

Workflow Management Award

SelectHub research analysts have evaluated InfoSphere Information Server and concluded it earns best-in-class honors for Workflow Management.

Workflow Management Award

Synopsis of User Ratings and Reviews

User-Friendly: Dragging and dropping fields and screen elements make daily data tasks simple, though building custom functions might require more effort.
Extensive Connectivity: Pre-made connectors seamlessly link to databases, files, cloud apps and legacy systems.
Data Quality Management: Built-in tools find and fix errors and duplicates in data, keeping it accurate and reliable.
Scalability: Works efficiently with massive volumes of data using parallel processing and optimization techniques, making it perfect for big businesses.
Data Security: Access controls, encryption and activity tracking protect sensitive information.
Show more
Powerful Data Handling: Handles complex ETL/ELT processes and diverse data sources (relational, flat files, cloud platforms) with ease, streamlining data movement and integration.
Enhanced Data Quality: Ensures data accuracy and consistency through robust cleansing, validation, and transformation tools, boosting trust and reliability in data insights.
Scalability and Security: Supports large data volumes and complex integrations with confidence, safeguarding sensitive information through granular access controls and encryption.
Job Automation and Monitoring: Automates data pipelines and workflows, reducing manual effort and simplifying task management with comprehensive monitoring capabilities.
Improved Operational Efficiency: Centralizes data integration processes, eliminates data silos, and frees up IT resources for higher-value tasks, leading to cost savings and increased productivity.
Show more
Learning Curve: While it’s easy to perform basic tasks, mastering some advanced features and fixing complicated problems can be tricky.
Cost: It can be expensive, especially for smaller companies. Though small businesses don’t have vast data sizes, the deployment model and selected features can inflate the price.
Slowdown with Big Data: It might slow down with large data sizes. It’s advisable to ask for demos with high data loads.
Needs Tech Experts: Managing the infrastructure requires IT people and system administrators.
Show more
Steep Learning Curve: Complex interface and feature-rich platform require significant training and expertise, even for experienced data professionals.
High Cost of Ownership: Licensing fees, maintenance, and potential hardware/infrastructure upgrades can make it a costly solution for smaller organizations or simpler data needs.
Limited Out-of-the-Box Connectors: May require custom development or third-party tools for integration with certain data sources or applications, increasing implementation complexity and costs.
Performance Bottlenecks: Can experience slowdowns or scalability issues with very large datasets or intricate ETL/ELT processes, demanding careful optimization and resource allocation.
Limited Cloud-Native Functionality: Core features are primarily designed for on-premises deployments, with cloud options requiring additional setup and configuration, potentially hindering agility and flexibility.
Show more

Informatica PowerCenter has a reputation for easy adoption. The drag-and-drop interface makes it a breeze to move data around and connect to different sources.It seamlessly connects to cloud apps, databases, and legacy systems, saving businesses a ton of manual work. The wide range of connectors and smooth integration with other Informatica tools seem valuable enough to justify the cost.However, it isn't perfect. Compared to similar software, there’s a steeper learning curve, especially for advanced features. The cost can also be a sticking point, especially for businesses with small data loads.Performance is another area with mixed reviews. While PowerCenter has traditionally been reliable for everyday tasks, its performance can lag while handling massive amounts of data.

Show more

User reviews of InfoSphere Information Server paint a picture of a powerful data integration tool, capable of handling complex tasks and diverse data sources. Admiration for its robust ETL/ELT capabilities, data quality tools, and secure architecture echoes frequently, with users citing improved data accuracy and streamlined data movement as major benefits. Automation features and job monitoring are also praised for boosting operational efficiency and freeing up resources. However, the praise comes with caveats. The steep learning curve and demanding resource requirements are consistent gripes, making InfoSphere a better fit for larger organizations with dedicated IT expertise and infrastructure. The high cost of ownership, including licensing, maintenance, and potential hardware upgrades, further strengthens this point. Additionally, the limited out-of-the-box connectors and potential performance bottlenecks with massive datasets are concerns for some users. Compared to competitors, InfoSphere shines in its scalability and security, catering to high-volume, mission-critical scenarios. However, users also acknowledge the presence of simpler, more user-friendly options that might be better suited for smaller setups or less complex data needs. Ultimately, the choice boils down to individual priorities. If data volume, security, and advanced features are paramount, InfoSphere stands out, despite its demanding nature. But for those seeking a smoother learning curve or broader use cases, other solutions might offer a better fit. In essence, user reviews reveal InfoSphere Information Server as a powerful tool for complex data challenges, but its strengths come with a price tag and learning curve. Carefully evaluating data needs and priorities is crucial before choosing this data integration powerhouse.

Show more

Screenshots

Top Alternatives in ETL Tools


AWS Glue

Azure Data Factory

Cloud Data Fusion

Dataflow

DataStage

Fivetran

Hevo

IDMC

InfoSphere Information Server

Integrate.io

Oracle Data Integrator

Pentaho

Qlik Talend Data Integration

SAP Data Services

SAS Data Management

Skyvia

SQL Server

SQL Server Integration Services

Talend

TIBCO Cloud Integration

Related Categories

Head-to-Head Comparison

WE DISTILL IT INTO REAL REQUIREMENTS, COMPARISON REPORTS, PRICE GUIDES and more...

Compare products
Comparison Report
Just drag this link to the bookmark bar.
?
Table settings