SAP Data Services vs Oracle Data Integrator

Last Updated:

Our analysts compared SAP Data Services vs Oracle Data Integrator based on data from our 400+ point analysis of ETL Tools, user reviews and our own crowdsourced data from our free software selection platform.

Oracle Data Integrator Software Tool

Product Basics

Formerly known as BusinessObjects Data Services (BODS), it’s part of the information management layer of SAP’s Business Technology Platform. With a focus on data quality, it extracts, transforms and loads all data types to enterprise interfaces.

Dashboards enable visual analytics and display the impact of data quality issues on downstream workflows. Auto documentation allows teams to write dataflow information and add comments for collaboration. An intuitive UI and Unicode compliance provide localization across more than 190 countries. Data security is ensured with AES 128-bit encryption.

Pros:
  • Robust transformations
  • Scalable for large volumes
  • Tight SAP integration
  • Visual job design
  • Centralized governance
Cons:
  • High cost and licensing
  • Steep learning curve
  • Limited open source
  • SAP ecosystem dependence
  • Complex job maintenance
read more...
Oracle Data Integrator (ODI) is a data integration platform designed to extract, transform, and load (ETL) data from various sources to target systems. It offers a visual interface for building and managing data pipelines, including pre-built connectors for popular databases, applications, and cloud services. ODI is ideal for organizations needing to integrate data from diverse sources for business intelligence, data warehousing, and other analytical needs. Its key benefits include ease of use, scalability, high performance, and extensive out-of-the-box functionality. Popular features include graphical mapping interface, data quality checks, data lineage tracking, and support for complex data transformations. User reviews highlight ODI's strengths in simplifying complex data integration tasks, offering robust data quality tools, and ensuring efficient data processing. However, some users report occasional performance issues and limited flexibility compared to more open-source solutions. Pricing varies based on deployment options and required features, typically ranging from several thousand to tens of thousands of dollars per year, with payment options including annual licenses and subscription plans.

Pros
  • Easy to use interface
  • Strong data quality tools
  • High performance & scalable
  • Extensive built-in functionality
  • Connects to popular data sources
Cons
  • Occasional performance issues
  • Less flexible than open-source tools
  • Steeper learning curve for advanced tasks
  • Potentially high cost depending on deployment
  • Limited community support compared to open-source options
read more...
$10,000 Annually
Get a free price quote
Tailored to your specific needs
$0.09/OCPU, /Hour
Free Trial is unavailable →
Get a free price quote
Tailored to your specific needs
Small 
i
Medium 
i
Large 
i
Small 
i
Medium 
i
Large 
i
Windows
Mac
Linux
Android
Chromebook
Windows
Mac
Linux
Android
Chromebook
Cloud
On-Premise
Mobile
Cloud
On-Premise
Mobile

Product Assistance

Documentation
In Person
Live Online
Videos
Webinars
Documentation
In Person
Live Online
Videos
Webinars
Email
Phone
Chat
FAQ
Forum
Knowledge Base
24/7 Live Support
Email
Phone
Chat
FAQ
Forum
Knowledge Base
24/7 Live Support

Product Insights

  • Maximize ROI: Streamline processes and maximize efficiency. Access data where it’s stored, load and move it while ensuring optimal speed and performance. Unlock contextual insights by transforming data. 
  • Source Disparate Data: Draws data from files, XML, relational databases, web services and mainframes. Connects to big data, cloud and NoSQL systems including Amazon Web Services, Google Cloud Platform, Microsoft Azure Marketplace, SAP Cloud Platform, Vertica, MongoDB, Apache Spark on Apache Hive, Teradata and Hadoop. Aggregates unstructured data like text from Adobe PDFs, Microsoft Word, Outlook, Excel and more. 
  • Deploy Anywhere: Implement on-premise, in the cloud or go hybrid. Move existing content and assets to and from SAP Data Intelligence Cloud and use them across the enterprise. 
  • Permissions Management: Uses the Central Management Server (CMS) for users’ accounts and permissions management. Add and remove team members’ rights and manage access to repositories on a per individual basis. 
read more...
  • Maximize ROI: Reduces infrastructure costs by eliminating the need for an ETL server and engine. Save on labor costs with a smaller learning curve and reduce TCO with lower development costs. 
  • Integrate Disparate Data: Supports all RDBMS like Oracle, Exadata, Teradata, IBM DB2, Netezza, Sybase IQ, ERPs, LDAP, XML and flat files, among others. 
  • Deploy Faster: Enhance user experience and developer productivity with a flow-based declarative user interface. Enables developers to focus on describing what’s to be done visually, with data architects defining processes and executing data integration separately. Shorten implementation times and simplify maintenance. 
  • Map Big Data: Transform large, complex data sets by leveraging its flexible and highly performant architecture. Generate Apache Spark code as per big data standards, with native support for big data and parallel processing. 
  • Access Data 24*7: Scales as the data grows with clustered deployments for high availability. Optimizes workloads with JDBC connection pooling, load balancing and a connection retry mechanism to recover failed sessions. 
read more...
  • Optimize Performance: Pushes down entire processing workflows into the source or target system for the best throughput. Partitions the data and processes it in parallel, fully independent streams. 
  • Process Unstructured Data: Reveal data relationships and interactions – the who, what, when and how of text. Unlock unstructured text data insights through natural-language processing. Understand the meaning and context of information, not just the words. 
  • Merge Datasets: Merges multiple incoming datasets into one output entity with the same schema as the incoming dataset. Performs the SQL UNION ALL operation through merge transform. 
  • Maintain Data Quality: Gain employees’ and clients’ trust with reliable, accurate, unique data. Enforce data quality standards in real time and perform quality checks before analyzing and integrating data. Embed data duplication checks into workflows and systems. See beyond errors and inconsistencies to uncover a single version of the truth. 
    • Data Profiling: Cleanse and standardize data like names, addresses, emails, phone numbers and dates. Ensure consistency of key reference data used across the organization. 
    • Master Data Management: Integrates with SAP NetWeaver MDM to provide more cleansing and matching capabilities. 
read more...
  • Simple Design: Save on a separate ETL server and engine; transform complex datasets using only the source and target servers. Deploys E-LT architecture based on existing RDBMS engines and SQL. Uses database CPU and memory to run transformations. 
    • Service-Oriented Architecture (SOA): Consolidate databases, ERP and middleware in a single business solution by building a shared services layer with Oracle SOA Suite. Improve bulk data transfer performance, business optimization, process visibility and exception handling. 
  • ODI Studio: Configure and manage ODI; administer the infrastructure, reverse engineer the metadata, develop projects, schedule, operate and monitor executions. 
  • Administer Centrally: Set up production environments, manage and monitor run-time operations and diagnose errors with the ODI Enterprise Edition Console. 
    • Get read access to the metadata repository, and perform topology configuration and production operations through a web-based UI. 
    • Integrates with the Oracle Enterprise Manager Fusion Middleware Control Console for single-screen monitoring of data integration and Fusion Middleware components. 
    • Manage all ODI environment components from Oracle Enterprise Manager Cloud Control through the Management Pack. 
  • Data Quality Firewall: Automatically detects and recycles faulty data before incorporating it in the target system – no need for programming. Follows the data integrity rules and constraints defined on the target platform and in ODI. 
read more...

Product Ranking

#29

among all
ETL Tools

#31

among all
ETL Tools

Find out who the leaders are

Analyst Rating Summary

95
95
100
100
92
100
89
88
Show More Show More
Data Delivery
Data Transformation
Performance and Scalability
Platform Capabilities
Platform Security
Data Delivery
Data Quality
Metadata Management
Performance and Scalability
Platform Capabilities

Analyst Ratings for Functional Requirements Customize This Data Customize This Data

SAP Data Services
Oracle Data Integrator
+ Add Product + Add Product
Data Delivery Data Quality Data Sources And Targets Connectivity Data Transformation Metadata Management Platform Capabilities Workflow Management 100 92 89 100 93 100 96 100 100 88 96 100 100 89 0 25 50 75 100
100%
0%
0%
100%
0%
0%
77%
23%
0%
100%
0%
0%
89%
0%
11%
79%
0%
21%
100%
0%
0%
96%
0%
4%
80%
10%
10%
100%
0%
0%
100%
0%
0%
100%
0%
0%
90%
0%
10%
90%
0%
10%

Analyst Ratings for Technical Requirements Customize This Data Customize This Data

100%
0%
0%
100%
0%
0%
91%
9%
0%
100%
0%
0%

User Sentiment Summary

Great User Sentiment 112 reviews
Great User Sentiment 243 reviews
80%
of users recommend this product

SAP Data Services has a 'great' User Satisfaction Rating of 80% when considering 112 user reviews from 3 recognized software review sites.

81%
of users recommend this product

Oracle Data Integrator has a 'great' User Satisfaction Rating of 81% when considering 243 user reviews from 5 recognized software review sites.

3.9 (31)
4.0 (17)
n/a
4.39 (18)
n/a
4.4 (18)
4.1 (54)
4.2 (69)
4.0 (27)
3.9 (121)

Awards

SelectHub research analysts have evaluated SAP Data Services and concluded it earns best-in-class honors for Data Transformation.

Data Transformation Award

we're gathering data

Synopsis of User Ratings and Reviews

Robust Data Transformations: Handles complex data cleansing, manipulation, and enrichment tasks with a wide range of built-in functions, ensuring data quality and accuracy for downstream analytics.
Tight SAP Integration: Seamlessly connects and transforms data within the SAP ecosystem, simplifying data flows and reducing integration complexity for SAP-centric organizations.
Scalable for Large Volumes: Efficiently handles high data volumes with parallel processing, data partitioning, and optimization techniques, ensuring smooth performance for growing data needs.
Visual Job Design: Intuitive drag-and-drop interface simplifies job creation and maintenance, making data integration accessible even for users with less technical expertise.
Centralized Governance: Provides centralized control and monitoring of data flows, ensuring data consistency, lineage tracking, and adherence to compliance regulations.
Show more
Easy to Use: Intuitive drag-and-drop interface simplifies data integration tasks, even for non-technical users.
Pre-built Connectors: Supports a wide range of data sources and targets, including databases, applications, and cloud platforms.
Scalable and Robust: Handles large data volumes and complex data integration processes efficiently.
Data Quality Management: Built-in features for data cleansing, validation, and transformation ensure data accuracy.
Workflow Automation: Schedule and automate data integration tasks for timely data delivery.
Security and Governance: Comprehensive security features and role-based access control ensure data privacy and compliance.
Show more
High Cost and Licensing: Requires separate licensing fees on top of existing SAP licenses, with costs scaling based on features, user licenses, and deployment options. Can be expensive compared to open-source or alternative data integration tools.
Steep Learning Curve: Mastering the visual job design and complex data transformations can require significant training and experience, especially for users unfamiliar with the platform.
Limited Open Source: Relies heavily on proprietary SAP technologies and lacks extensive open-source integrations, potentially restricting customization and community support compared to more open platforms.
SAP Ecosystem Dependence: Tight integration with the SAP ecosystem can limit flexibility and increase costs for organizations using other data sources or platforms.
Complex Job Maintenance: Managing and maintaining complex data flows with numerous transformations and dependencies can be challenging, requiring specialized expertise.
Show more
Steep Learning Curve: Mastering ODI's features and functionalities requires significant training and experience.
Limited Open-Source Community: Compared to other ETL tools, ODI has a smaller open-source community, which can lead to fewer resources and support.
High Cost: Oracle Data Integrator can be expensive to purchase and maintain, especially for small and medium-sized businesses.
Limited Cloud Support: While ODI supports cloud deployments, its cloud capabilities are not as mature as some other ETL tools.
Performance Bottlenecks: Complex mappings and large data volumes can lead to performance issues.
Show more

User reviews of SAP Data Services paint a contrasting picture. Proponents praise its robust data transformations, seamless SAP integration, and scalability for handling large data volumes. The visual job design and centralized governance features further attract organizations needing intuitive data flow creation and efficient data lineage management. Additionally, SAP Data Services shines in SAP-centric environments, simplifying data movement within existing infrastructure. However, critics point to its high cost and complex licensing as major drawbacks, making it less compelling for organizations on a budget or using diverse data sources. The steep learning curve and limited open-source compatibility can also be hurdles, requiring dedicated training and potentially restricting customization options. Compared to open-source alternatives like Talend or Apache Airflow, SAP Data Services offers less flexibility and community support. Additionally, its tight dependence on the SAP ecosystem can add complexities and raise costs for organizations not fully invested in SAP solutions. Ultimately, SAP Data Services excels in data transformation, scalability, and seamless SAP integration, making it a powerful choice for SAP-centric organizations with complex data needs and the resources to invest in its capabilities. However, its high cost, limited open source, and SAP dependence make it less suitable for budget-conscious organizations or those seeking greater platform flexibility and broader community support.

Show more

Oracle Data Integrator (ODI) receives mixed reviews, with users praising its intuitive interface, wide range of supported data sources, and robust data quality management features. However, some users find its learning curve steep and criticize its limited open-source community and high cost. Many users appreciate ODI's ease of use, particularly its drag-and-drop interface. One user noted, "ODI's intuitive interface made it easy to learn and use, even for someone with limited technical experience." This is a significant advantage compared to other ETL tools with steeper learning curves, like Informatica PowerCenter. ODI's wide range of pre-built connectors and support for various data sources is another highlight. "We were able to integrate data from a variety of sources, including databases, applications, and cloud platforms, without any major challenges," stated a user. This flexibility is crucial for modern businesses working with diverse data landscapes, especially compared to competitors like Talend which may require additional configurations for specific data sources. However, ODI's learning curve can be daunting for new users. One user commented, "It took me a while to feel comfortable using ODI, as I had to learn its specific terminology and concepts." Additionally, the limited open-source community can make it difficult to find answers or support online. "Compared to other ETL tools, the lack of a strong open-source community around ODI can be frustrating," noted a user. This is a disadvantage compared to open-source alternatives like Apache Airflow, which offer extensive online resources and communities. Another drawback is ODI's high cost. "The cost of ODI was a major concern for us, and we had to carefully consider our budget before making a decision," said a user. This high cost can be a deterrent for small and medium-sized businesses, particularly when compared to more cost-effective solutions like Pentaho Data Integration. Overall, ODI offers powerful data integration capabilities with a user-friendly interface and comprehensive data quality features. However, its steep learning curve, limited open-source community, and high cost can be significant drawbacks for some users. Ultimately, the decision of whether ODI is the right fit depends on individual needs and priorities.

Show more

Screenshots

Top Alternatives in ETL Tools


AWS Glue

Azure Data Factory

Cloud Data Fusion

Dataflow

DataStage

Fivetran

Hevo

IDMC

Informatica PowerCenter

InfoSphere Information Server

Integrate.io

Oracle Data Integrator

Pentaho

Qlik Talend Data Integration

SAS Data Management

Skyvia

SQL Server

SQL Server Integration Services

Talend

TIBCO Cloud Integration

Related Categories

Head-to-Head Comparison

WE DISTILL IT INTO REAL REQUIREMENTS, COMPARISON REPORTS, PRICE GUIDES and more...

Compare products
Comparison Report
Just drag this link to the bookmark bar.
?
Table settings