Looking for alternatives to SAP Data Services? Many users crave user-friendly and feature-rich solutions for tasks like Data Delivery, Workflow Management, and Data Transformation. Leveraging crowdsourced data from over 1,000 real ETL Tools selection projects based on 400+ capabilities, we present a comparison of SAP Data Services to leading industry alternatives like Fivetran, InfoSphere Information Server, Dataflow, and Hevo.
Analyst Rating
User Sentiment
among all ETL Tools
SAP Data Services has a 'great' User Satisfaction Rating of 80% when considering 112 user reviews from 3 recognized software review sites.
Fivetran has a 'excellent' User Satisfaction Rating of 92% when considering 28 user reviews from 2 recognized software review sites.
InfoSphere Information Server has a 'good' User Satisfaction Rating of 77% when considering 80 user reviews from 3 recognized software review sites.
Dataflow has a 'great' User Satisfaction Rating of 86% when considering 106 user reviews from 3 recognized software review sites.
Hevo has a 'excellent' User Satisfaction Rating of 94% when considering 83 user reviews from 3 recognized software review sites.
User reviews of SAP Data Services paint a contrasting picture. Proponents praise its robust data transformations, seamless SAP integration, and scalability for handling large data volumes. The visual job design and centralized governance features further attract organizations needing intuitive data flow creation and efficient data lineage management. Additionally, SAP Data Services shines in SAP-centric environments, simplifying data movement within existing infrastructure. However, critics point to its high cost and complex licensing as major drawbacks, making it less compelling for organizations on a budget or using diverse data sources. The steep learning curve and limited open-source compatibility can also be hurdles, requiring dedicated training and potentially restricting customization options. Compared to open-source alternatives like Talend or Apache Airflow, SAP Data Services offers less flexibility and community support. Additionally, its tight dependence on the SAP ecosystem can add complexities and raise costs for organizations not fully invested in SAP solutions. Ultimately, SAP Data Services excels in data transformation, scalability, and seamless SAP integration, making it a powerful choice for SAP-centric organizations with complex data needs and the resources to invest in its capabilities. However, its high cost, limited open source, and SAP dependence make it less suitable for budget-conscious organizations or those seeking greater platform flexibility and broader community support.
Users praise Fivetran for its ease of use and effortless data integration. "Setting up connectors is straightforward," one reviewer comments, "like plugging in appliances." This plug-and-play simplicity sets it apart from competitors like Stitch, often lauded for its flexibility but criticized for a steeper learning curve. However, Fivetran's strength in pre-built connectors comes at a cost: limited customizability. While users love its "seamless data movement," another user points out it's "not ideal for complex transformations," requiring additional tools that negate its initial ease. This lack of advanced ETL capabilities puts it behind platforms like Informatica PowerCenter, but at a fraction of the cost. Ultimately, Fivetran shines for its user-friendly approach and reliable data pipelines, perfect for businesses prioritizing simplicity and scalability. But for complex data manipulation or real-time needs, users might find themselves yearning for the power and flexibility of other ETL solutions.
User reviews of InfoSphere Information Server paint a picture of a powerful data integration tool, capable of handling complex tasks and diverse data sources. Admiration for its robust ETL/ELT capabilities, data quality tools, and secure architecture echoes frequently, with users citing improved data accuracy and streamlined data movement as major benefits. Automation features and job monitoring are also praised for boosting operational efficiency and freeing up resources. However, the praise comes with caveats. The steep learning curve and demanding resource requirements are consistent gripes, making InfoSphere a better fit for larger organizations with dedicated IT expertise and infrastructure. The high cost of ownership, including licensing, maintenance, and potential hardware upgrades, further strengthens this point. Additionally, the limited out-of-the-box connectors and potential performance bottlenecks with massive datasets are concerns for some users. Compared to competitors, InfoSphere shines in its scalability and security, catering to high-volume, mission-critical scenarios. However, users also acknowledge the presence of simpler, more user-friendly options that might be better suited for smaller setups or less complex data needs. Ultimately, the choice boils down to individual priorities. If data volume, security, and advanced features are paramount, InfoSphere stands out, despite its demanding nature. But for those seeking a smoother learning curve or broader use cases, other solutions might offer a better fit. In essence, user reviews reveal InfoSphere Information Server as a powerful tool for complex data challenges, but its strengths come with a price tag and learning curve. Carefully evaluating data needs and priorities is crucial before choosing this data integration powerhouse.
Dataflow, a cloud-based streaming analytics platform, garners praise for its ease of use, scalability, and cost-effectiveness. Users, particularly those new to streaming analytics or with limited coding experience, appreciate the intuitive interface and visual pipeline building, making it a breeze to get started compared to competitors that require more programming expertise. Additionally, Dataflow's serverless architecture and pay-as-you-go model are highly attractive, eliminating infrastructure management burdens and aligning costs with actual data processing needs, unlike some competitors with fixed costs or complex pricing structures. However, Dataflow isn't without its drawbacks. Some users find it less customizable than competing solutions, potentially limiting its suitability for highly specific use cases. Occasional processing delays, especially for intricate pipelines or high data volumes, can also be a concern, impacting real-time analytics capabilities. Furthermore, while Dataflow integrates well with other Google Cloud services, this tight coupling can restrict portability to other cloud platforms, something competitors with broader cloud compatibility might offer. Ultimately, Dataflow's strengths in user-friendliness, scalability, and cost-effectiveness make it a compelling choice for those new to streaming analytics or seeking a flexible, cost-conscious solution. However, its limitations in customization and potential processing delays might necessitate exploring alternatives for highly specialized use cases or mission-critical, real-time analytics.
Hevo user reviews paint a contrasting picture. Proponents praise its effortless data integration with pre-built connectors and a user-friendly interface, making it ideal for non-technical users and reducing the need for complex coding. Automated data pipelines and cloud-based scalability further attract users seeking timely data updates and flexible infrastructure. Additionally, Hevo's free tier and tiered pricing plans are lauded for being cost-effective, especially for startups and businesses with basic needs. However, critics point out limitations in Hevo's customization options. While its pre-built tools are convenient, users with complex data manipulation needs crave more flexibility and scripting options, citing challenges in tailoring pipelines for specific requirements. Scalability concerns also emerge for handling massive datasets, with some users reporting occasional performance issues. Additionally, Hevo's proprietary data format and limited open-source integration raise concerns about vendor lock-in, making it less suitable for organizations prioritizing future platform flexibility. Finally, the pay-as-you-go model can lead to unexpected costs for businesses with unpredictable data fluctuations. Compared to similar ETL tools like Fivetran or Stitch, Hevo shines in its user-friendliness and affordability. However, its limitations in customization, scalability for large data, and potential for vendor lock-in can be dealbreakers for complex ETL needs. Ultimately, Hevo excels in simplifying data integration for users with basic or moderate data volumes and budget constraints, but organizations with advanced requirements or demanding flexibility might need to explore alternative solutions.
WE DISTILL IT INTO REAL REQUIREMENTS, COMPARISON REPORTS, PRICE GUIDES and more...